LEADER 04298nam 2200589 450 001 9910141239503321 005 20170814164845.0 010 $a1-118-03312-4 010 $a1-118-03027-3 035 $a(CKB)2670000000128083 035 $a(EBL)695250 035 $a(OCoLC)761319799 035 $a(SSID)ssj0000597341 035 $a(PQKBManifestationID)11392937 035 $a(PQKBTitleCode)TC0000597341 035 $a(PQKBWorkID)10577467 035 $a(PQKB)10939436 035 $a(MiAaPQ)EBC695250 035 $a(PPN)250198193 035 $a(EXLCZ)992670000000128083 100 $a20160816h19981998 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNumerical analysis for applied science /$fMyron B. Allen III, Eli L. Isaacson 210 1$aNew York, New York :$cJohn Wiley & Sons, Inc.,$d1998. 210 4$dİ1998 215 $a1 online resource (512 p.) 225 0 $aPure and Applied Mathematics: A Wiley-Interscience Series of Texts, Monographs and Tracts 300 $a"A Wiley-Interscience Publication." 311 $a0-471-55266-6 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aNumerical Analysis for Applied Science; CONTENTS; Preface; 0 Some Useful Tools; 0.1 Introduction; 0.2 Bounded Sets; 0.3 Normed Vector Spaces; 0.4 Results from Calculus; 0.5 Problems; 0.6 References; 1 Approximation of Functions; 1.1 Introduction; 1.2 Polynomial Interpolation; 1.3 Piecewise Polynomial Interpolation; 1.4 Hermite Interpolation; 1.5 Interpolation in Two Dimensions; 1.6 Splines; 1.7 Least-Squares Methods; 1.8 Trigonometric Interpolation; 1.9 Problems; 1.10 References; 2 Direct Methods for Linear Systems; 2.1 Introduction; 2.2 Gauss Elimination; 2.3 Variants of Gauss Elimination 327 $a2.4 Band Matrices2.5 Matrix Norms; 2.6 Errors and Iterative Improvement; 2.7 Problems; 2.8 References; 3 Solution of Nonlinear Equations; 3.1 Introduction; 3.2 Bisection; 3.3 Successive Substitution in One Variable; 3.4 Newton's Method in One Variable; 3.5 The Secant Method; 3.6 Successive Substitution: Several Variables; 3.7 Newton's Method: Several Variables; 3.8 Problems; 3.9 References; 4 Iterative Methods for Linear Systems; 4.1 Introduction; 4.2 Conceptual Foundations; 4.3 Matrix-Splitting Techniques; 4.4 Successive Overrelaxation; 4.5 The Conjugate-Gradient Method; 4.6 Problems 327 $a4.7 References5 Eigenvalue Problems; 5.1 Basic Facts About Eigenvalues; 5.2 Power Methods; 5.3 The QR Method: Underlying Concepts; 5.4 The QR Method Implementation; 5.5 Problems; 5.6 References; 6 Numerical Integration; 6.1 Introduction; 6.2 Newton-Cotes Formulas; 6.3 Romberg and Adaptive Quadrature; 6.4 Gauss Quadrature; 6.5 Problems; 6.6 References; 7 Ordinary Differential Equations; 7.1 Introduction; 7.2 One-Step Methods; 7.3 Multistep Methods: Consistency and Stability; 7.4 Convergence of Multistep Methods; 7.5 Problems; 7.6 References; 8 Difference Methods for PDEs; 8.1 Introduction 327 $a8.2 The Poisson Equation8.3 The Advection Equation; 8.4 Other Time-Dependent Equations; 8.5 Problems; 8.6 References; 9 Introduction to Finite Elements; 9.1 Introduction and Background; 9.2 A Steady-State Problem; 9.3 A Transient Problem; 9.4 Problems; 9.5 References; Appendix A: Divided Differences; Appendix B: Local Minima; Appendix C: Chebyshev Polynomials; Index 330 $aWritten for graduate students in applied mathematics, engineering and science courses, the purpose of this book is to present topics in ""Numerical Analysis"" and ""Numerical Methods."" It will combine the material of both these areas as well as special topics in modern applications. Included at the end of each chapter are a variety of theoretical and computational exercises. 410 0$aPure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts 606 $aNumerical analysis 615 0$aNumerical analysis. 676 $a515 700 $aAllen$b Myron B.$f1954-$054137 702 $aIsaacson$b Eli L. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910141239503321 996 $aNumerical analysis for applied science$9252991 997 $aUNINA