LEADER 02581nam 2200577 a 450 001 9910140860003321 005 20200520144314.0 010 $a9783642147005 010 $a3642147003 024 7 $a10.1007/978-3-642-14700-5 035 $a(CKB)2670000000065053 035 $a(SSID)ssj0000506059 035 $a(PQKBManifestationID)11341137 035 $a(PQKBTitleCode)TC0000506059 035 $a(PQKBWorkID)10514219 035 $a(PQKB)11684950 035 $a(DE-He213)978-3-642-14700-5 035 $a(MiAaPQ)EBC3066355 035 $a(PPN)149908741 035 $a(EXLCZ)992670000000065053 100 $a20110223d2011 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aTopology and geometry for physics /$fHelmut Eschrig 205 $a1st ed. 2011. 210 $aBerlin $cSpringer$d2011 215 $a1 online resource (XII, 390 p. 60 illus.) 225 1 $aLecture notes in physics,$x0075-8450 ;$vv. 822 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9783642146992 311 08$a3642146996 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Topology -- Manifolds -- Tensor Fields -- Integration, Homology and Cohomology -- Lie Groups -- Bundles and Connections -- Parallelism, Holonomy, Homotopy and (Co)homology -- Riemannian Geometry -- Compendium. 330 $aA concise but self-contained introduction of the central concepts of modern topology and differential geometry on a mathematical level is given specifically with applications in physics in mind. All basic concepts are systematically provided including sketches of the proofs of most statements. Smooth finite-dimensional manifolds, tensor and exterior calculus operating on them, homotopy, (co)homology theory including Morse theory of critical points, as well as the theory of fiber bundles and Riemannian geometry, are treated. Examples from physics comprise topological charges, the topology of periodic boundary conditions for solids, gauge fields, geometric phases in quantum physics and gravitation. 410 0$aLecture notes in physics ;$v822. 606 $aTopology 606 $aMathematical physics 615 0$aTopology. 615 0$aMathematical physics. 676 $a530.15/4 700 $aEschrig$b H$g(Helmut)$0515334 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910140860003321 996 $aTopology and Geometry for Physics$9855619 997 $aUNINA