LEADER 05335nam 2200661Ia 450 001 9910140611603321 005 20200520144314.0 010 $a1-282-54873-5 010 $a9786612548734 010 $a0-470-68948-X 010 $a0-470-68947-1 035 $a(CKB)2670000000013704 035 $a(EBL)496068 035 $a(OCoLC)609858735 035 $a(SSID)ssj0000359808 035 $a(PQKBManifestationID)11278972 035 $a(PQKBTitleCode)TC0000359808 035 $a(PQKBWorkID)10316847 035 $a(PQKB)10209759 035 $a(MiAaPQ)EBC496068 035 $a(Au-PeEL)EBL496068 035 $a(CaPaEBR)ebr10375595 035 $a(CaONFJC)MIL254873 035 $a(PPN)219486808 035 $a(EXLCZ)992670000000013704 100 $a20091215d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aEvolutionary topology optimization of continuum structures$b[electronic resource] $emethods and applications /$fX. Huang, Y.M. Xie 210 $aChichester, West Sussex, U.K. ;$aHoboken, NJ $cWiley$d2010 215 $a1 online resource (237 p.) 300 $aDescription based upon print version of record. 311 $a0-470-74653-X 320 $aIncludes bibliographical references and index. 327 $aEVOLUTIONARYTOPOLOGYOPTIMIZATION OFCONTINUUMSTRUCTURES; Contents; Preface; 1 Introduction; 1.1 Structural Optimization; 1.2 Topology Optimization of Continuum Structures; 1.3 ESO/BESO and the Layout of the Book; References; 2 Evolutionary Structural Optimization Method; 2.1 Introduction; 2.2 ESO Based on Stress Level; 2.2.1 Evolutionary Procedure; 2.2.2 Example of Two-bar Frame; 2.2.3 Examples of Michell Type Structures; 2.3 ESO for Stiffness or Displacement Optimization; 2.3.1 Sensitivity Number and Evolutionary Procedure; 2.3.2 Example of a Short Cantilever 327 $a2.3.3 Example of a Beam Structure2.4 Conclusion; References; 3 Bi-directional Evolutionary Structural Optimization Method; 3.1 Introduction; 3.2 Problem Statement and Sensitivity Number; 3.2.1 Problem Statement; 3.2.2 Sensitivity Number; 3.3 Filter Scheme and Improved Sensitivity Number; 3.3.1 Checkerboard and Mesh-dependency Problems; 3.3.2 Filter Scheme for BESO Method; 3.3.3 Stabilizing the Evolutionary Process; 3.4 Element Removal/Addition and Convergence Criterion; 3.5 Basic BESO Procedure; 3.6 Examples of BESO Starting from Initial Full Design 327 $a3.6.1 Topology Optimization of a Short Cantilever3.6.2 Topology Optimization of a Beam; 3.7 Examples of BESO Starting from Initial Guess Design; 3.8 Example of a 3D Structure; 3.9 Mesh-independence Studies; 3.10 Conclusion; References; 4 BESO Utilizing Material Interpolation Scheme with Penalization; 4.1 Introduction; 4.2 Problem Statement and Material Interpolation Scheme; 4.2.1 Problem Statement; 4.2.2 Material Interpolation Scheme; 4.3 Sensitivity Analysis and Sensitivity Number; 4.3.1 Sensitivity Analysis; 4.3.2 Sensitivity Number; 4.4 Examples 327 $a4.4.1 Topology Optimization of a Short Cantilever4.4.2 Topology Optimization of a Beam; 4.4.3 Topology Optimization of a 3D Cantilever; 4.5 Conclusion; Appendix 4.1; References; 5 Comparing BESO with Other Topology Optimization Methods; 5.1 Introduction; 5.2 The SIMP Method; 5.3 Comparing BESO with SIMP; 5.3.1 Comparison of Topology Optimization Algorithms without a Mesh-independency Filter; 5.3.2 Comparison of Topology Optimization Algorithms with a Mesh-independency Filter; 5.3.3 Advantages of the BESO Method and Questions yet to be Resolved 327 $a5.4 Discussion on Zhou and Rozvany (2001) Example5.4.1 Introduction of Zhou and Rozvany (2001) Example; 5.4.2 Is it a Nonoptimal or a Local Optimal Solution?; 5.4.3 Avoidance of Highly Inefficient Local Optimum; 5.5 Conclusion; References; 6 BESO for Extended Topology Optimization Problems; 6.1 Introduction; 6.2 Minimizing Structural Volume with a Displacement or Compliance Constraint; 6.2.1 Sensitivity Analysis and Sensitivity Number; 6.2.2 Determination of Structural Volume; 6.2.3 Examples; 6.3 Stiffness Optimization with an Additional Displacement Constraint; 6.3.1 Sensitivity Number 327 $a6.3.2 Determination of Lagrangian Multiplier 330 $aEvolutionary Topology Optimization of Continuum Structures treads new ground with a comprehensive study on the techniques and applications of evolutionary structural optimization (ESO) and its later version bi-directional ESO (BESO) methods. Since the ESO method was first introduced by Xie and Steven in 1992 and the publication of their well-known book Evolutionary Structural Optimization in 1997, there have been significant improvements in the techniques as well as important practical applications. The authors present these developments, illustrated by numerous interesting and d 606 $aStructural optimization 606 $aTopology 615 0$aStructural optimization. 615 0$aTopology. 676 $a624.1/7713 700 $aHuang$b X$g(Xiaodong),$f1972-$0906778 701 $aXie$b Y. M$0906779 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910140611603321 996 $aEvolutionary topology optimization of continuum structures$92028328 997 $aUNINA LEADER 01557nam 22004453 450 001 9910795607203321 005 20221114084603.0 010 $a92-64-57387-9 010 $a92-64-59527-9 035 $a(CKB)5590000000463169 035 $a(MiAaPQ)EBC30229375 035 $a(Au-PeEL)EBL30229375 035 $a(OCoLC)1247472414 035 $a(BIP)079769404 035 $a(EXLCZ)995590000000463169 100 $a20221114d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aCounterfeiting, Piracy and the Swiss Economy 205 $a1st ed. 210 1$aParis :$cOrganization for Economic Cooperation & Development,$d2021. 210 4$dİ2021. 215 $a1 online resource (103 pages) 311 $a92-64-98566-2 330 $aThe Swiss economy is innovative and knowledge-intensive. Consequently, it relies heavily on intellectual property rights. Swiss industries are also export-oriented and solidly integrated in the global economy. At the same time, the threats of counterfeiting and piracy are growing, and Swiss industries are vulnerable. 606 $aProduct counterfeiting 610 $aPublic Administration 610 $aPolitical Science 615 0$aProduct counterfeiting. 700 $aOECD$01462710 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910795607203321 996 $aCounterfeiting, Piracy and the Swiss Economy$93791790 997 $aUNINA