LEADER 06576nam 2200733 450 001 9910140271903321 005 20200520144314.0 010 $a1-118-73058-5 010 $a1-118-73059-3 010 $a1-118-73057-7 035 $a(CKB)2670000000547014 035 $a(EBL)1652089 035 $a(SSID)ssj0001131678 035 $a(PQKBManifestationID)11639693 035 $a(PQKBTitleCode)TC0001131678 035 $a(PQKBWorkID)11145202 035 $a(PQKB)11443934 035 $a(OCoLC)871187075 035 $a(DLC) 2014007685 035 $a(Au-PeEL)EBL1652089 035 $a(CaPaEBR)ebr10851649 035 $a(CaONFJC)MIL584529 035 $a(OCoLC)874322136 035 $a(MiAaPQ)EBC1652089 035 $a(EXLCZ)992670000000547014 100 $a20140406h20142014 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAlgebraic identification and estimation methods in feedback control systems /$fHebertt Sira-rami?rez 210 1$aChichester, West Sussex, United Kingdom :$cJohn Wiley & Sons,$d2014. 210 4$dİ2014 215 $a1 online resource (391 p.) 225 1 $aWiley Series in Dynamics and Control of Electromechanical Systems 300 $aDescription based upon print version of record. 311 $a1-118-73060-7 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright; Contents; Series Preface; Preface; Chapter 1 Introduction; 1.1 Feedback Control of Dynamic Systems; 1.1.1 Feedback; 1.1.2 Why Do We Need Feedback?; 1.2 The Parameter Identification Problem; 1.2.1 Identifying a System; 1.3 A Brief Survey on Parameter Identification; 1.4 The State Estimation Problem; 1.4.1 Observers; 1.4.2 Reconstructing the State via Time Derivative Estimation; 1.5 Algebraic Methods in Control Theory: Differences from Existing Methodologies; 1.6 Outline of the Book; References; Chapter 2 Algebraic Parameter Identification in Linear Systems 327 $a2.1 Introduction 2.1.1 The Parameter-Estimation Problem in Linear Systems; 2.2 Introductory Examples; 2.2.1 Dragging an Unknown Mass in Open Loop; 2.2.2 A Perturbed First-Order System; 2.2.3 The Visual Servoing Problem; 2.2.4 Balancing of the Plane Rotor; 2.2.5 On the Control of the Linear Motor; 2.2.6 Double-Bridge Buck Converter; 2.2.7 Closed-Loop Behavior; 2.2.8 Control of an unknown variable gain motor; 2.2.9 Identifying Classical Controller Parameters; 2.3 A Case Study Introducing a ""Sentinel'' Criterion; 2.3.1 A Suspension System Model; 2.4 Remarks; References 327 $aChapter 3 Algebraic Parameter Identification in Nonlinear Systems 3.1 Introduction; 3.2 Algebraic Parameter Identification for Nonlinear Systems; 3.2.1 Controlling an Uncertain Pendulum; 3.2.2 A Block-Driving Problem; 3.2.3 The Fully Actuated Rigid Body; 3.2.4 Parameter Identification Under Sliding Motions; 3.2.5 Control of an Uncertain Inverted Pendulum Driven by a DC Motor; 3.2.6 Identification and Control of a Convey Crane; 3.2.7 Identification of a Magnetic Levitation System; 3.3 An Alternative Construction of the System of Linear Equations; 3.3.1 Genesio-Tesi Chaotic System 327 $a3.3.2 The Ueda Oscillator 3.3.3 Identification and Control of an Uncertain Brushless DC Motor; 3.3.4 Parameter Identification and Self-tuned Control for the Inertia Wheel Pendulum; 3.3.5 Algebraic Parameter Identification for Induction Motors; 3.3.6 A Criterion to Determine the Estimator Convergence: The Error Index; 3.4 Remarks; References; Chapter 4 Algebraic Parameter Identification in Discrete-Time Systems; 4.1 Introduction; 4.2 Algebraic Parameter Identification in Discrete-Time Systems; 4.2.1 Main Purpose of the Chapter; 4.2.2 Problem Formulation and Assumptions 327 $a4.2.3 An Introductory Example 4.2.4 Samuelson's Model of the National Economy; 4.2.5 Heating of a Slab from Two Boundary Points; 4.2.6 An Exact Backward Shift Reconstructor; 4.3 A Nonlinear Filtering Scheme; 4.3.1 He?non System; 4.3.2 A Hard Disk Drive; 4.3.3 The Visual Servo Tracking Problem; 4.3.4 A Shape Control Problem in a Rolling Mill; 4.3.5 Algebraic Frequency Identification of a Sinusoidal Signal by Means of Exact Discretization; 4.4 Algebraic Identification in Fast-Sampled Linear Systems; 4.4.1 The Delta-Operator Approach: A Theoretical Framework; 4.4.2 Delta-Transform Properties 327 $a4.4.3 A DC Motor Example 330 $a"Presents a model-based algebraic approach to on-line parameter and state estimation in uncertain dynamic feedback control systemsAlgebraic Identification and Estimation Methods in Feedback Control Systems presents the model-based algebraic approach to on-line parameter and state estimation in uncertain dynamic feedback control systems. This approach evades the mathematical intricacies of the traditional stochastic approach, proposing a direct model-based scheme with several, easy to implement, computational advantages. This book contains many illustrative, tutorial style, developed examples of the recently introduced algebraic approach for parameter and state estimation in a variety of physical systems of continuous, and discrete, nature. The developments include some laboratory experimental results in several areas related to mechatronics systems. The reader, with an engineering level mathematical background and through the many expository examples, will be able to master the use and understand the consequences of the highly theoretical differential algebraic viewpoint in control systems theory"--$cProvided by publisher. 330 $a"Algebraic Identification and Estimation Methods in Feedback Control Systems presents the model-based algebraic approach to on-line parameter and state estimation in uncertain dynamic feedback control systems"--$cProvided by publisher. 410 0$aWiley series in dynamics and control of electromechanical systems. 606 $aFeedback control systems$xMathematical models 606 $aControl theory$xMathematics 606 $aDifferential algebra 615 0$aFeedback control systems$xMathematical models. 615 0$aControl theory$xMathematics. 615 0$aDifferential algebra. 676 $a629.8/301512 686 $aTEC009070$2bisacsh 700 $aSira-rami?rez$b Herbett J.$0979216 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910140271903321 996 $aAlgebraic identification and estimation methods in feedback control systems$92232229 997 $aUNINA