LEADER 00877nam 2200253la 450 001 9910481670003321 005 20210618155757.0 035 $a(UK-CbPIL)2111769676 035 $a(CKB)5500000000143190 035 $a(EXLCZ)995500000000143190 100 $a20210618d1630 uy | 101 0 $aita 135 $aurcn||||a|bb| 200 10$aPersio / tradotto in verso sciolto e dichiarato da Francesco Stelluti Accad. Linceo da Fabriano all' illmo. et rmo. Sigre. il sig. Cardinale Barberino$b[electronic resource] 210 $aRome $cGiacomo Mascardi$d1630 215 $aOnline resource ([24], 218, [20] pages., 4º) 300 $aReproduction of original in Biblioteca Nazionale Centrale di Firenze. 700 $aPersius$0182758 801 0$bUk-CbPIL 801 1$bUk-CbPIL 906 $aBOOK 912 $a9910481670003321 996 $aPersio$91985548 997 $aUNINA LEADER 05617nam 2200721 450 001 9910140187703321 005 20200520144314.0 010 $a1-118-57755-8 010 $a1-118-57763-9 010 $a1-118-57764-7 035 $a(CKB)2670000000494155 035 $a(EBL)1575622 035 $a(SSID)ssj0001100646 035 $a(PQKBManifestationID)11642265 035 $a(PQKBTitleCode)TC0001100646 035 $a(PQKBWorkID)11063909 035 $a(PQKB)11175133 035 $a(MiAaPQ)EBC4036443 035 $a(MiAaPQ)EBC1575622 035 $a(Au-PeEL)EBL1575622 035 $a(CaPaEBR)ebr10814441 035 $a(CaONFJC)MIL550403 035 $a(OCoLC)865333128 035 $a(EXLCZ)992670000000494155 100 $a20131211d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMathematical models of beams and cables /$fAngelo Luongo, Daniele Zulli ; series editor, Noe?l Challamel 210 1$aLondon, England ;$aHoboken, New Jersey :$cWiley,$d2013. 210 4$d©2013 215 $a1 online resource (379 p.) 225 0$aMechanical engineering and solid mechanics series 300 $aDescription based upon print version of record. 311 $a1-84821-421-9 320 $aIncludes bibliographical references and index. 327 $aCover; Title page; Contents; Preface; Introduction; List of Main Symbols; Chapter 1. A One-Dimensional Beam Metamodel; 1.1. Models and metamodel; 1.2. Internally unconstrained beams; 1.2.1. Kinematics; 1.2.2. Dynamics; 1.2.3. The hyperelastic law; 1.2.4. The Fundamental Problem; 1.3. Internally constrained beams; 1.3.1. The mixed formulation for the internally constrained beam kinematics and constraints; 1.3.2. The displacement method for the internally constrained beam; 1.4. Internally unconstrained prestressed beams; 1.4.1. The nonlinear theory; 1.4.2. The linearized theory 327 $a1.5. Internally constrained prestressed beams1.5.1. The nonlinear mixed formulation; 1.5.2. The linearized mixed formulation; 1.5.3. The nonlinear displacement formulation; 1.5.4. The linearized displacement formulation; 1.6. The variational formulation; 1.6.1. The total potential energy principle; 1.6.2. Unconstrained beams; 1.6.3. Constrained beams; 1.6.4. Unconstrained prestressed beams; 1.6.5. Constrained prestressed beams; 1.7. Example: the linear Timoshenko beam; 1.8. Summary; Chapter 2. Straight Beams; 2.1. Kinematics; 2.1.1. The displacement and rotation fields 327 $a2.1.2. Tackling the rotation tensor2.1.3. The geometric boundary conditions; 2.1.4. The strain vector; 2.1.5. The curvature vector; 2.1.6. The strain-displacement relationships; 2.1.7. The velocity and spin fields; 2.1.8. The velocity gradients and strain-rates; 2.2. Dynamics; 2.2.1. The balance of virtual powers; 2.2.2. The inertial contributions; 2.2.3. The balance of momentum; 2.2.4. The scalar forms of the balance equations and boundary conditions; 2.2.5. The Lagrangian balance equations; 2.3. Constitutive law; 2.3.1. The hyperelastic law 327 $a2.3.2. Identification of the elastic law from a 3D-model2.3.3. Homogenization of beam-like structures; 2.3.4. Linear viscoelastic laws; 2.4. The Fundamental Problem; 2.4.1. Exact equations; 2.4.2. The linearized theory for elastic prestressed beams; 2.5. The planar beam; 2.5.1. Kinematics; 2.5.2. Dynamics; 2.5.3. The Virtual Power Principle; 2.5.4. Constitutive laws; 2.5.5. The Fundamental Problem; 2.6. Summary; Chapter 3. Curved Beams; 3.1. The reference configuration and the initial curvature; 3.2. The beam model in the 3D-space; 3.2.1. Kinematics; 3.2.2. Dynamics; 3.2.3. The elastic law 327 $a3.2.4. The Fundamental Problem3.3. The planar curved beam; 3.3.1. Kinematics; 3.3.2. Dynamics; 3.3.3. The Virtual Power Principle; 3.3.4. Constitutive law; 3.3.5. Fundamental Problem; 3.4. Summary; Chapter 4. Internally Constrained Beams; 4.1. Stiff beams and internal constraints; 4.2. The general approach; 4.3. The unshearable straight beam in 3D; 4.3.1. The mixed formulation; 4.3.2. The displacement formulation; 4.4. The unshearable straight planar beam; 4.5. The inextensible and unshearable straight beam in 3D; 4.5.1. Hybrid formulation: Version I; 4.5.2. Hybrid formulation: Version II 327 $a4.6. The inextensible and unshearable straight planar beam 330 $aNonlinear models of elastic and visco-elastic onedimensional continuous structures (beams and cables) are formulated by the authors of this title. Several models of increasing complexity are presented: straight/curved, planar/non-planar, extensible/inextensible, shearable/unshearable, warpingunsensitive/ sensitive, prestressed/unprestressed beams, both in statics and dynamics. Typical engineering problems are solved via perturbation and/or numerical approaches, such as bifurcation and stability under potential and/or tangential loads, parametric excitation, nonlinear dynamics and aeroelasticit 410 0$aISTE 606 $aStructural analysis (Engineering)$xMathematical models 606 $aGirders 606 $aCables 615 0$aStructural analysis (Engineering)$xMathematical models. 615 0$aGirders. 615 0$aCables. 676 $a624.1772 700 $aLuongo$b Angela$0974469 701 $aChallamel$b Noe?l$0974470 712 02$aJohn Wiley & Sons, 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910140187703321 996 $aMathematical models of beams and cables$92218597 997 $aUNINA