LEADER 05479nam 2200697 450 001 9910140183803321 005 20221215094507.0 010 $a1-118-76208-8 010 $a1-118-76214-2 010 $a1-118-76185-5 035 $a(CKB)2670000000494202 035 $a(EBL)1576679 035 $a(SSID)ssj0001163791 035 $a(PQKBManifestationID)11761062 035 $a(PQKBTitleCode)TC0001163791 035 $a(PQKBWorkID)11164693 035 $a(PQKB)10433113 035 $a(MiAaPQ)EBC1576679 035 $a(Au-PeEL)EBL1576679 035 $a(CaPaEBR)ebr10814722 035 $a(CaONFJC)MIL550395 035 $a(OCoLC)865334449 035 $a(EXLCZ)992670000000494202 100 $a20131217d2013 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aMaterials and wave control /$fedited by Éric Lheurette ; series editor, Pierre-Noe?l Favennec 210 1$aHoboken, New Jersey :$cJohn Wiley and Sons, Incorporation,$d2013. 210 4$d©2013 215 $a1 online resource (242 p.) 225 0 $aWaves series 300 $aDescription based upon print version of record. 311 $a1-84821-518-5 320 $aIncludes bibliographical references and index. 327 $aCover; Title page; Contents; Introduction; Chapter 1. Overview of Microwave and Optical Metamaterial Technologies; 1.1. Introduction and background; 1.2. Omega-type arrays; 1.2.1. Dispersion and angular properties; 1.2.2. Tunable omega-type structure; 1.2.3. Omega-type pattern at millimeter wavelengths; 1.2.4. SRRs at infrared; 1.3. Transmission lines with series capacitances and shunt inductances; 1.3.1. Tuneable phase shifter for centimeter wavelengths; 1.3.2. Left-handed transmission lines at tetrahertz frequencies; 1.4. Fishnet approach; 1.4.1. Tunable fishnet for centimeter wavelengths 327 $a1.4.2. Terahertz subwavelength holes arrays1.4.3. Wedge-type devices; 1.4.4. Fishnet with twisted apertures: chiral device; 1.5. Full dielectric approach: Mie resonance based devices; 1.5.1. BST cube technology; 1.6. Photonic crystal technology; 1.6.1. Principle; 1.6.2. Flat lens; 1.6.3. Carpet cloaking devices; 1.7. Conclusion and prospects; 1.8. Acknowledgments; 1.9. Bibliography; Chapter 2. MetaLines: Transmission Line Approach for the Design of Metamaterial Devices; 2.1. Introduction; 2.2. Historical concepts of transmission lines and homogenization; 2.2.1. Electrical model 327 $a2.2.2. Homogenization 2.3. CRLH transmission lines; 2.3.1. MetaLine cell; 2.3.2. Case with ?S ?p; 2.3.4. Balanced case with ?S = ?p; 2.4. Some technical approaches to realize MetaLines; 2.4.1. Context; 2.4.2. Discrete component approach; 2.4.3. Distributed or semi-lumped element approach in microstrip technology; 2.4.4. Distributed element approach in coplanar waveguide technology; 2.4.5. The resonant approach; 2.5. Toward tunability; 2.5.1. The dual-band behavior; 2.5.2. Mechanical agility; 2.5.3. CRLH line controlled with activecomponents 327 $a2.5.4. Ferroelectric agility 2.5.5. Ferrimagnetic agility; 2.6. Conclusion; 2.7. Bibliography; Chapter 3. Metamaterials for Non-Radiative Microwave Functions and Antennas; 3.1. Introduction; 3.2. Metamaterials for non-radiative applications; 3.2.1. Miniaturization; 3.2.2. Bandwidth improvement; 3.2.3. Dual band; 3.2.4. Zeroth-order resonator (ZOR); 3.3. Metamaterials for antennas at microwave frequencies; 3.3.1. Antenna miniaturization; 3.3.2. Efficient electrically small antennas with metamaterials; 3.3.3. Patch antenna miniaturization considering metamaterial substrate 327 $a3.3.4. Miniature metamaterial antennas: numerical and experimental attempts 3.4. Conclusion; 3.5. Bibliography; Chapter 4. Toward New Prospects for Electromagnetic Compatibility; 4.1. Introduction; 4.2. Electromagnetic compatibility; 4.2.1. Trends in the transport and telecommunication industries; 4.2.2. EMC challenges induced by recent industrial trends - metamaterials for EMC; 4.3. Electromagnetic shielding - potential of metamaterials; 4.3.1. Figures of merit for shielding configurations; 4.3.2. One-dimensional metamaterial shield 327 $a4.4. Metamaterials for 3D shielded cavities - application to electromagnetic reverberation chambers 330 $aSince the concept was first proposed at the end of the 20th Century, metamaterials have been the subject of much research and discussion throughout the wave community. More than 10 years later, the number of related published articles is increasing significantly. On the one hand, this success can be attributed to dreams of new physical objects which are the consequences of the singular properties of metamaterials. Among them, we can consider the examples of perfect lensing and invisibility cloaking. On other hand,metamaterials also provide new tools for the design of well-known wave 410 0$aISTE 606 $aElectromagnetic waves$xTransmission 606 $aWave functions 606 $aMetamaterials 615 0$aElectromagnetic waves$xTransmission. 615 0$aWave functions. 615 0$aMetamaterials. 676 $a539.2 701 $aLheurette$b Eacute}ric$0860852 701 $aFavennec$b Pierre-Noe?l$0860853 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910140183803321 996 $aMaterials and wave control$91921021 997 $aUNINA