LEADER 09679nam 2200829Ia 450 001 9910139870903321 005 20251214175230.0 010 $a9786612380013 010 $a9781282380011 010 $a128238001X 010 $a9780470022658 010 $a0470022655 010 $a9780470022641 010 $a0470022647 024 7 $a10.1002/9780470022658 035 $a(CKB)1000000000811822 035 $a(EBL)470314 035 $a(SSID)ssj0000334785 035 $a(PQKBManifestationID)11254750 035 $a(PQKBTitleCode)TC0000334785 035 $a(PQKBWorkID)10270862 035 $a(PQKB)10399681 035 $a(CaBNVSL)mat08040162 035 $a(IDAMS)0b00006485f0e636 035 $a(IEEE)8040162 035 $a(Au-PeEL)EBL470314 035 $a(CaPaEBR)ebr10351183 035 $a(CaONFJC)MIL238001 035 $a(PPN)252574575 035 $a(CaSebORM)9780470022634 035 $a(MiAaPQ)EBC470314 035 $a(OCoLC)476315570 035 $a(Perlego)2752051 035 $a(EXLCZ)991000000000811822 100 $a20090209d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aApplied digital optics $emicro-optics, optical MEMS, and nanophotonics /$fBernard Kress, Patrick Meyrueis 205 $a1st edition 210 $aChichester, West Sussex, U.K. ;$aHoboken, N.J. $cWiley$d2009 215 $a1 online resource (639 p.) 300 $aDescription based upon print version of record. 311 08$a9780470022634 311 08$a0470022639 320 $aIncludes bibliographical references and index. 327 $aAbout the Authors -- Foreword by Professor Joseph Goodman -- Foreword by Professor Trevor Hall -- Acknowledgments -- Acronyms -- Introduction -- Why a Book on Digital Optics? -- Digital versus Analog -- What are Digital Optics? -- The Realm of Digital Optics -- 1 From Refraction to Diffraction -- 1.1 Refraction and Diffraction Phenomena -- 1.2 Understanding the Diffraction Phenomenon -- 1.3 No More Parasitic Effects -- 1.4 From Refractive Optics to Diffractive Optics -- 1.5 From Diffractive Optics to Digital Optics -- 1.6 Are Diffractives and Refractives Interchangeable Elements? -- 2 Classification of Digital Optics -- 2.1 Early Digital Optics -- 2.2 Guided-wave Digital Optics -- 2.3 Free-space Digital Optics -- 2.4 Hybrid Digital Optics -- 3 Guided-wave Digital Optics -- 3.1 From Optical Fibers to Planar Lightwave Circuits (PLCs) -- 3.2 Light Propagation in Waveguides -- 3.3 The Optical Fiber -- 3.4 The Dielectric Slab Waveguide -- 3.5 Channel Waveguides -- 3.6 PLC In- and Out-coupling -- 3.7 Functionality Integration -- 4 Refractive Micro-optics -- 4.1 Micro-optics in Nature -- 4.2 GRIN Lenses -- 4.3 Surface-relief Micro-optics -- 4.4 Micro-optics Arrays -- 5 Digital Diffractive Optics: Analytic Type -- 5.1 Analytic and Numeric Digital Diffractives -- 5.2 The Notion of Diffraction Orders -- 5.3 Diffraction Gratings -- 5.4 Diffractive Optical Elements -- 5.5 Diffractive Interferogram Lenses -- 6 Digital Diffractive Optics: Numeric Type -- 6.1 Computer-generated Holograms -- 6.2 Designing CGHs -- 6.3 Multiplexing CGHs -- 6.4 Various CGH Functionality Implementations -- 7 Digital Hybrid Optics -- 7.1 Why Combine Different Optical Elements? -- 7.2 Analysis of Lens Aberrations -- 7.3 Improvement of Optical Functionality -- 7.4 The Generation of Novel Optical Functionality -- 7.5 Waveguide-based Hybrid Optics -- 7.6 Reducing Weight, Size and Cost -- 7.7 Specifying Hybrid Optics in Optical CAD/CAM -- 7.8 A Parametric Design Example of Hybrid Optics via Ray-tracing Techniques. 327 $a8 Digital Holographic Optics -- 8.1 Conventional Holography -- 8.2 Different Types of Holograms -- 8.3 Unique Features of Holograms -- 8.4 Modeling the Behavior of Volume Holograms -- 8.5 HOE Lenses -- 8.6 HOE Design Tools -- 8.7 Holographic Origination Techniques -- 8.8 Holographic Materials for HOEs -- 8.9 Other Holographic Techniques -- 9 Dynamic Digital Optics -- 9.1 An Introduction to Dynamic Digital Optics -- 9.2 Switchable Digital Optics -- 9.3 Tunable Digital Optics -- 9.4 Reconfigurable Digital Optics -- 9.5 Digital Software Lenses: Wavefront Coding -- 10 Digital Nano-optics -- 10.1 The Concept of 'Nano' in Optics -- 10.2 Sub-wavelength Gratings -- 10.3 Modeling Sub-wavelength Gratings -- 10.4 Engineering Effective Medium Optical Elements -- 10.5 Form Birefringence Materials -- 10.6 Guided Mode Resonance Gratings -- 10.7 Surface Plasmonics -- 10.8 Photonic Crystals -- 10.9 Optical Metamaterials -- 11 Digital Optics Modeling Techniques -- 11.1 Tools Based on Ray Tracing -- 11.2 Scalar Diffraction Based Propagators -- 11.3 Beam Propagation Modeling (BPM) Methods -- 11.4 Nonparaxial Diffraction Regime Issues -- 11.5 Rigorous Electromagnetic Modeling Techniques -- 11.6 Digital Optics Design and Modeling Tools Available Today -- 11.7 Practical Paraxial Numeric Modeling Examples -- 12 Digital Optics Fabrication Techniques -- 12.1 Holographic Origination -- 12.2 Diamond Tool Machining -- 12.3 Photo-reduction -- 12.4 Microlithographic Fabrication of Digital Optics -- 12.5 Micro-refractive Element Fabrication Techniques -- 12.6 Direct Writing Techniques -- 12.7 Gray-scale Optical Lithography -- 12.8 Front/Back Side Wafer Alignments and Wafer Stacks -- 12.9 A Summary of Fabrication Techniques -- 13 Design for Manufacturing -- 13.1 The Lithographic Challenge -- 13.2 Software Solutions: Reticle Enhancement Techniques -- 13.3 Hardware Solutions -- 13.4 Process Solutions -- 14 Replication Techniques for Digital Optics -- 14.1 The LIGA Process -- 14.2 Mold Generation Techniques. 327 $a14.3 Embossing Techniques -- 14.4 The UV Casting Process -- 14.5 Injection Molding Techniques -- 14.6 The Sol-Gel Process -- 14.7 The Nano-replication Process -- 14.8 A Summary of Replication Technologies -- 15 Specifying and Testing Digital Optics -- 15.1 Fabless Lithographic Fabrication Management -- 15.2 Specifying the Fabrication Process -- 15.3 Fabrication Evaluation -- 15.4 Optical Functionality Evaluation -- 16 Digital Optics Application Pools -- 16.1 Heavy Industry -- 16.2 Defense, Security and Space -- 16.3 Clean Energy -- 16.4 Factory Automation -- 16.5 Optical Telecoms -- 16.6 Biomedical Applications -- 16.7 Entertainment and Marketing -- 16.8 Consumer Electronics -- 16.9 Summary -- 16.10 The Future of Digital Optics -- Conclusion -- Appendix A: Rigorous Theory of Diffraction -- A.1 Maxwell's Equations -- A.2 Wave Propagation and the Wave Equation -- A.3 Towards a Scalar Field Representation -- Appendix B: The Scalar Theory of Diffraction -- B.1 Full Scalar Theory -- B.2 Scalar Diffraction Models for Digital Optics -- B.3 Extended Scalar Models -- Appendix C: FFTs and DFTs in Optics -- C.1 The Fourier Transform in Optics Today -- C.2 Conditions for the Existence of the Fourier Transform -- C.3 The Complex Fourier Transform -- C.4 The Discrete Fourier Transform -- C.5 The Properties of the Fourier Transform and Examples in Optics -- C.6 Other Transforms -- Index. 330 $aMiniaturization and mass replications have begun to lead the optical industry in the transition from traditional analog to novel digital optics. As digital optics enter the realm of mainstream technology through the worldwide sale of consumer electronic devices, this timely book aims to present the topic of digital optics in a unified way. Ranging from micro-optics to nanophotonics, and design to fabrication through to integration in final products, it reviews the various physical implementations of digital optics in either micro-refractives, waveguide (planar lightwave chips), diffractive and hybrid optics or sub-wavelength structures (resonant gratings, surface plasmons, photonic crystals and metamaterials). Finally, it presents a comprehensive list of industrial and commercial applications that are taking advantage of the unique properties of digital optics. . Helps optical engineers review and choose the appropriate software tools to design, model and generate fabrication files.. Gives product managers access to an exhaustive list of applications available in today's market for integrating such digital optics, as well as where the next potential application of digital optics might be.. Provides a broad view for technical marketing managers in all aspects of digital optics, and how such optics can be classified.. Explains the numerical implementation of optical design and modelling techniques.. Enables micro-optics foundries to integrate the latest fabrication and replication techniques, and accordingly fine tune their own fabrication processes.. Supplementary book material is available at www.applieddigitaloptics.com Applied Digital Optics is aimed primarily at optical engineers and product development and technical marketing managers; it is also of interest to graduate-level photonics students and micro-optic foundries. 606 $aOptical MEMS 606 $aNanophotonics 606 $aIntegrated optics 606 $aSignal processing$xDigital techniques 606 $aDiffraction gratings 615 0$aOptical MEMS. 615 0$aNanophotonics. 615 0$aIntegrated optics. 615 0$aSignal processing$xDigital techniques. 615 0$aDiffraction gratings. 676 $a621.36 700 $aKress$b Bernard C$01892521 701 $aMeyrueis$b Patrick$0999845 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910139870903321 996 $aApplied digital optics$94538731 997 $aUNINA