LEADER 04160nam 22007695 450 001 9910139818203321 005 20251016005203.0 010 $a9783540460824 010 $a3540460829 024 7 $a10.1007/3-540-46082-9 035 $a(CKB)1000000000778218 035 $a(SSID)ssj0000325196 035 $a(PQKBManifestationID)11225623 035 $a(PQKBTitleCode)TC0000325196 035 $a(PQKBWorkID)10321057 035 $a(PQKB)11090036 035 $a(DE-He213)978-3-540-46082-4 035 $a(MiAaPQ)EBC3071930 035 $a(PPN)155178032 035 $a(EXLCZ)991000000000778218 100 $a20121227d2002 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aNoncommutative Geometry and the Standard Model of Elementary Particle Physics /$fedited by Florian Scheck, Wend Werner, Harald Upmeier 205 $a1st ed. 2002. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2002. 215 $a1 online resource (XII, 350 p.) 225 1 $aLecture Notes in Physics,$x1616-6361 ;$v596 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9783540440710 311 08$a3540440712 320 $aIncludes bibliographical references. 327 $aFoundations of Noncommutative Geometry and Basic Model Building -- Spectral Triples and Abstract Yang-Mills Functional -- Real Spectral Triples and Charge Conjugation -- The Commutative Case: Spinors, Dirac Operator and de Rham Algebra -- Connes? Trace Formula and Dirac Realization of Maxwell and Yang-Mills Action -- The Einstein-Hilbert Action as a Spectral Action -- Spectral Action and the Connes-Chamsedinne Model -- The Lagrangian of the Standard Model Derived from Noncommutative Geometry -- Dirac Operator and Real Structure on Euclidean and Minkowski Spacetime -- The Electro-weak Model -- The Full Standard Model -- Standard Model Coupled with Gravity -- The Higgs Mechanism and Spontaneous Symmetry Breaking -- New Directions in Noncommutative Geometry and Mathematical Physics -- The Impact of NC Geometry in Particle Physics -- The su(2/1) Model of Electroweak Interactions and Its Connection to NC Geometry -- Quantum Fields and Noncommutative Spacetime -- NC Geometry and Quantum Fields: Simple Examples -- Dirac Eigenvalues as Dynamical Variables -- Hopf Algebras in Renormalization and NC Geometry -- NC Geometry of Strings and Duality Symmetry. 330 $aThe outcome of a close collaboration between mathematicians and mathematical physicists, these lecture notes present the foundations of A. Connes noncommutative geometry as well as its applications in particular to the field of theoretical particle physics. The coherent and systematic approach makes this book useful for experienced researchers and postgraduate students alike. 410 0$aLecture Notes in Physics,$x1616-6361 ;$v596 606 $aMathematical physics 606 $aGeometry, Differential 606 $aParticles (Nuclear physics) 606 $aQuantum field theory 606 $aAlgebra 606 $aMathematical Methods in Physics 606 $aDifferential Geometry 606 $aElementary Particles, Quantum Field Theory 606 $aAlgebra 615 0$aMathematical physics. 615 0$aGeometry, Differential. 615 0$aParticles (Nuclear physics) 615 0$aQuantum field theory. 615 0$aAlgebra. 615 14$aMathematical Methods in Physics. 615 24$aDifferential Geometry. 615 24$aElementary Particles, Quantum Field Theory. 615 24$aAlgebra. 676 $a539.7/2 702 $aScheck$b Florian$f1936-$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aWerner$b W$g(Wend),$f1958-$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aUpmeier$b Harald$f1950-$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910139818203321 996 $aNoncommutative geometry and the standard model of elementary particle physics$9377217 997 $aUNINA