LEADER 05437nam 2200673Ia 450 001 9910139623903321 005 20200520144314.0 010 $a1-282-68790-5 010 $a9786612687907 010 $a0-470-61161-8 010 $a0-470-39425-0 035 $a(CKB)2550000000005853 035 $a(EBL)477641 035 $a(OCoLC)520990467 035 $a(SSID)ssj0000340382 035 $a(PQKBManifestationID)11947669 035 $a(PQKBTitleCode)TC0000340382 035 $a(PQKBWorkID)10387358 035 $a(PQKB)11355774 035 $a(MiAaPQ)EBC477641 035 $a(EXLCZ)992550000000005853 100 $a20090316d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMicromechanics of granular materials /$fedited by Bernard Cambou, Michel Jean, Farhang Radjai 210 $aLondon $cISTE ;$aHoboken, NJ $cJohn Wiley$d2009 215 $a1 online resource (364 p.) 225 1 $aISTE ;$vv.77 300 $aDescription based upon print version of record. 311 $a1-84821-075-2 320 $aIncludes bibliographical references and index. 327 $aMicromechanics of Granular Materials; Contents; Introduction; Chapter 1. Experimental and Numerical Analysis of Local Variables in Granular Materials; 1.1. Introduction; 1.2. Description of granular texture; 1.2.1. Particle connectivity; 1.2.2. Contact network anisotropy: fabric tensors; 1.2.2.1. General case; 1.2.2.2. Case of 2D data; 1.2.2.3. Case of 3D data; 1.2.3. Branch vectors; 1.2.4. Evolution of granular texture; 1.2.5. Space partition: tessellation; 1.2.5.1. Voronoi cells; 1.2.5.2. Dirichlet cells; 1.2.5.3. General case; 1.2.5.4. Neighborhoods and local void ratios 327 $a1.3. Granular kinematics1.3.1. Particle displacements and rotations; 1.3.2. Rolling versus sliding; 1.3.3. Fluctuating displacement fields; 1.3.3.1. Uniform strain and fluctuations; 1.3.3.2. Probability densities; 1.3.3.3. Spatial correlations; 1.3.3.4. Granulence; 1.3.4. Local and global strains; 1.3.4.1. Particle-scale strain; 1.3.4.2. Strain localization; 1.4. Force transmission; 1.4.1. Probability density functions; 1.4.2. Bimodal character of stress transmission; 1.4.3. Force anisotropy; 1.5. Conclusion; 1.6. Bibliography 327 $aChapter 2. The Stress Tensor in Granular Media and in other Mechanical Collections2.1. Introduction; 2.1.1. Motivation; 2.1.2. The theoretical background; 2.1.3. Dynamics; 2.1.4. Pertinence; 2.2. Efforts and virtual power; 2.2.1. Resultant and moment of an effort; 2.2.2. Internal efforts; 2.2.3. Forces; 2.2.4. Efforts of order greater than zero; 2.2.5. Contact actions; 2.3. Equilibrium; 2.3.1. Main equalities; 2.3.1.1. Case of a continuous body; 2.3.1.2. Case of a granular material; 2.3.2. Classical continuous body; 2.3.3. Piece of string; 2.3.4. Finite collection of points 327 $a2.3.5. Interaction bridges2.3.6. Saturated soil; 2.4. Comparison with the pair-by-pair approach; 2.4.1. The classical definition; 2.4.1.1. The pair-by-pair calculation; 2.4.2. Numerical discussion of a tri-axial test; 2.5. Directions of cut; 2.5.1. Force transmitted across a cut; 2.5.2. Proof of the cutting direction law; 2.5.3. 2D bank; 2.5.3.1. Free surface law; 2.5.4. Conical pile; 2.6. Coarse graining the equation of Statics; 2.6.1. The divergence operator; 2.7. One step into Dynamics; 2.7.1. Introducing the acceleration field; 2.7.2. Rigid bodies; 2.7.2.1. Introducing the mass center 327 $a2.7.2.2. Introducing principal axes2.7.2.3. Invoking rigid body dynamics; 2.7.2.4. Spherical inertia; 2.7.2.5. 2D models; 2.7.3. Percussions; 2.8. Bibliography; Chapter 3. Multiscale Techniques for Granular Materials; 3.1. Introduction; 3.2. Scale change and fabric tensors; 3.2.1. Solid particles description; 3.2.1.1. Size of particles; 3.2.1.2. Shape of particles; 3.2.2. Fabric description for a granular sample; 3.2.2.1. Coordination number and compactness; 3.2.2.2. Definition of the overall anisotropy of a sample; 3.2.3. Voids description; 3.3. Change of scale for static variables 327 $a3.4. Change of scale for kinematic variables in granular materials 330 $aNearly all solids are compised of grains. However most studies treat materials as a continious solid. The book applies analysis used on loose granular materials to dense grainular materials. This title's main focus is devoted to static or dynamic loadings applied to dense materials, although rapid flows and widely dispersed media are also mentioned briefly. Three essential areas are covered: Local variable analysis: Contact forces, displacements and rotations, orientation of contacting particles and fabric tensors are all examples of local variables. Their statistical distributions, such as sp 410 0$aISTE 606 $aGranular materials$xMechanical properties 606 $aGranular materials$xMicrostructure 606 $aParticles 615 0$aGranular materials$xMechanical properties. 615 0$aGranular materials$xMicrostructure. 615 0$aParticles. 676 $a620/.43 701 $aCambou$b Bernard$032049 701 $aJean$b Michel$0346264 701 $aRadjai$b Farhang$0856057 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910139623903321 996 $aMicromechanics of granular materials$91911274 997 $aUNINA