LEADER 05518nam 2200685Ia 450 001 9910139588203321 005 20170809165432.0 010 $a1-283-28286-0 010 $a9786613282866 010 $a1-118-14378-7 010 $a1-118-14375-2 010 $a1-118-14376-0 035 $a(CKB)2550000000054432 035 $a(EBL)693744 035 $a(OCoLC)757511646 035 $a(SSID)ssj0000538198 035 $a(PQKBManifestationID)11335194 035 $a(PQKBTitleCode)TC0000538198 035 $a(PQKBWorkID)10557410 035 $a(PQKB)10782690 035 $a(MiAaPQ)EBC693744 035 $a(EXLCZ)992550000000054432 100 $a20110517d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aJet single-time Lagrange geometry and its applications$b[electronic resource] /$fVladimir Balan, Mircea Neagu 210 $aHoboken, N.J. $cJohn Wiley & Sons$dc2011 215 $a1 online resource (212 p.) 300 $aDescription based upon print version of record. 311 $a1-118-12755-2 320 $aIncludes bibliographical references and index. 327 $aJet Single-Time Lagrange Geometry and Its Applications; CONTENTS; Preface; PART I THE JET SINGLE-TIME LAGRANGE GEOMETRY; 1 Jet geometrical objects depending on a relativistic time; 1.1 d-tensors on the 1-jet space J1 (R, M); 1.2 Relativistic time-dependent semisprays. Harmonic curves; 1.3 Jet nonlinear connections. Adapted bases; 1.4 Relativistic time-dependent semisprays and jet nonlinear connections; 2 Deflection d-tensor identities in the relativistic time-dependent Lagrange geometry; 2.1 The adapted components of jet ?-linear connections; 2.2 Local torsion and curvature d-tensors 327 $a2.3 Local Ricci identities and nonmetrical deflection d-tensors3 Local Bianchi identities in the relativistic time-dependent Lagrange geometry; 3.1 The adapted components of h-normal ?-linear connections; 3.2 Deflection d-tensor identities and local Bianchi identities for d-connections of Cartan type; 4 The jet Riemann-Lagrange geometry of the relativistic time-dependent Lagrange spaces; 4.1 Relativistic time-dependent Lagrange spaces; 4.2 The canonical nonlinear connection; 4.3 The Cartan canonical metrical linear connection; 4.4 Relativistic time-dependent Lagrangian electromagnetism 327 $a4.4.1 The jet single-time electromagnetic field4.4.2 Geometrical Maxwell equations; 4.5 Jet relativistic time-dependent Lagrangian gravitational theory; 4.5.1 The jet single-time gravitational field; 4.5.2 Geometrical Einstein equations and conservation laws; 5 The jet single-time electrodynamics; 5.1 Riemann-Lagrange geometry on the jet single-time Lagrange space of electrodynamics ?DL1n; 5.2 Geometrical Maxwell equations on ?DL1n; 5.3 Geometrical Einstein equations on ?DL1n; 6 Jet local single-time Finsler-Lagrange geometry for the rheonomic Berwald-Moo?r metric of order three 327 $a6.1 Preliminary notations and formulas6.2 The rheonomic Berwald-Moo?r metric of order three; 6.3 Cartan canonical linear connection, d-torsions and d-curvatures; 6.4 Geometrical field theories produced by the rheonomic Berwald-Moo?r metric of order three; 6.4.1 Geometrical gravitational theory; 6.4.2 Geometrical electromagnetic theory; 7 Jet local single-time Finsler-Lagrange approach for the rheonomic Berwald-Moo?r metric of order four; 7.1 Preliminary notations and formulas; 7.2 The rheonomic Berwald-Moo?r metric of order four; 7.3 Cartan canonical linear connection, d-torsions and d-curvatures 327 $a7.4 Geometrical gravitational theory produced by the rheonomic Berwald-Moo?r metric of order four7.5 Some physical remarks and comments; 7.5.1 On gravitational theory; 7.5.2 On electromagnetic theory; 7.6 Geometric dynamics of plasma in jet spaces with rheonomic Berwald-Moo?r metric of order four; 7.6.1 Introduction; 7.6.2 Generalized Lagrange geometrical approach of the non-isotropic plasma on 1-jet spaces; 7.6.3 The non-isotropic plasma as a medium geometrized by the jet rheonomic Berwald-Moo?r metric of order four 327 $a8 The jet local single-time Finsler-Lagrange geometry induced by the rheonomic Chernov metric of order four 330 $aDevelops the theory of jet single-time Lagrange geometry and presents modern-day applications Jet Single-Time Lagrange Geometry and Its Applications guides readers through the advantages of jet single-time Lagrange geometry for geometrical modeling. With comprehensive chapters that outline topics ranging in complexity from basic to advanced, the book explores current and emerging applications across a broad range of fields, including mathematics, theoretical and atmospheric physics, economics, and theoretical biology. The authors begin by presenting basic theoretical 606 $aGeometry, Differential 606 $aLagrange equations 606 $aField theory (Physics) 608 $aElectronic books. 615 0$aGeometry, Differential. 615 0$aLagrange equations. 615 0$aField theory (Physics) 676 $a530.14/3 676 $a530.143 686 $aMAT012000$2bisacsh 700 $aBalan$b Vladimir$f1958-$0947039 701 $aNeagu$b Mircea$f1973-$0947040 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910139588203321 996 $aJet single-time Lagrange geometry and its applications$92139708 997 $aUNINA LEADER 03135 am 22005053u 450 001 9910220023003321 005 20221206102855.0 010 $a3-946234-87-9 035 $a(CKB)3800000000216487 035 $a(PPN)200368966 035 $a(EXLCZ)993800000000216487 100 $a20171016d2017 fy| 0 101 0 $aeng 135 $aurc|#---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTone in Yongning Na$b[electronic resource] $elexical tones and morphotonology /$fAlexis Michaud 210 1$aBerlin, Germany :$cLanguage Science Press,$d2017. 210 4$dİ2017 215 $a1 online resource (573 pages) $cdigital, PDF file(s) 225 1 $aStudies in Diversity Linguistics ;$vvolume 13 311 $a3-946234-86-0 320 $aIncludes bibliographical references and index. 327 $aAcknowledgements --Abbreviations and conventions --For quick reference: lexical tones and main tone rules --1. Introduction --2. The lexical tones of nouns --3. Compund nouns --4. Classifiers --5. Combination of nouns with grammatical elements --6. Verbs and their combinatory properties --7. Tone assignment rules and the division of utterances into tone groups --8. From surface phonological tone to phonetic realization --9. Yongning Na tones in dynamic-synchronic perspective --10. Typological perspectives --11. Yongning Na in its areal context --12. Conclusion --Appendix A: vowels and consonants --Appendix B: Historical and ethnological perspectives --References --Index. 330 $aYongning Na, also known as Mosuo, is a Sino-Tibetan language spoken in Southwest China. This book provides a description and analysis of its tone system, progressing from lexical tones towards morphotonology. Tonal changes permeate numerous aspects of the morphosyntax of Yongning Na. They are not the product of a small set of phonological rules, but of a host of rules that are restricted to specific morphosyntactic contexts. Rich morphotonological systems have been reported in this area of Sino-Tibetan, but book-length descriptions remain few. This study of an endangered language contributes to a better understanding of the diversity of prosodic systems in East Asia. The analysis is based on original fieldwork data (made available online), collected over the course of ten years, commencing in 2006. 410 0$aStudies in Diversity Linguistics ;$v13. 606 $aSino-Tibetan languages 606 $aSino-Tibetan languages$xGrammar 606 $aSino-Tibetan languages$xIntonation 606 $aSino-Tibetan languages$xMorphosyntax 606 $aSino-Tibetan languages$xPhonology 615 0$aSino-Tibetan languages. 615 0$aSino-Tibetan languages$xGrammar. 615 0$aSino-Tibetan languages$xIntonation. 615 0$aSino-Tibetan languages$xMorphosyntax. 615 0$aSino-Tibetan languages$xPhonology. 676 $a400 676 $a410 700 $aMichaud$b Alexis$0926403 801 0$bUkMaJRU 906 $aBOOK 912 $a9910220023003321 996 $aTone in Yongning Na$92080154 997 $aUNINA