LEADER 05293nam 2200709 a 450 001 9910139565903321 005 20170815152050.0 010 $a1-283-33234-5 010 $a9786613332349 010 $a1-118-14841-X 010 $a1-118-14840-1 010 $a1-118-14837-1 035 $a(CKB)2550000000061980 035 $a(EBL)818480 035 $a(SSID)ssj0000538054 035 $a(PQKBManifestationID)11324396 035 $a(PQKBTitleCode)TC0000538054 035 $a(PQKBWorkID)10557812 035 $a(PQKB)10561706 035 $a(MiAaPQ)EBC818480 035 $a(OCoLC)768230317 035 $a(CaSebORM)9781118148402 035 $a(EXLCZ)992550000000061980 100 $a20110527d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIntroduction to nanomaterials and devices$b[electronic resource] /$fOmar Manasreh 205 $a1st ed. 210 $aHoboken, N.J. $cWiley$d2012 215 $a1 online resource (488 p.) 300 $aDescription based upon print version of record. 311 $a0-470-92707-0 320 $aIncludes bibliographical references. 327 $aINTRODUCTION TO NANOMATERIALS AND DEVICES; CONTENTS; Preface; Fundamental Constants; 1 Growth of Bulk, Thin Films, and Nanomaterials; 1.1 Introduction; 1.2 Growth of Bulk Semiconductors; 1.2.1 Liquid-Encapsulated Czochralski (LEC) Method; 1.2.2 Horizontal Bridgman Method; 1.2.3 Float-Zone Growth Method; 1.2.4 Lely Growth Method; 1.3 Growth of Semiconductor Thin Films; 1.3.1 Liquid-Phase Epitaxy Method; 1.3.2 Vapor-Phase Epitaxy Method; 1.3.3 Hydride Vapor-Phase Epitaxial Growth of Thick GaN Layers; 1.3.4 Pulsed Laser Deposition Technique; 1.3.5 Molecular Beam Epitaxy Growth Technique 327 $a1.4 Fabrication and Growth of Semiconductor Nanomaterials1.4.1 Nucleation; 1.4.2 Fabrications of Quantum Dots; 1.4.3 Epitaxial Growth of Self-Assembly Quantum Dots; 1.5 Colloidal Growth of Nanocrystals; 1.6 Summary; Problems; Bibliography; 2 Application of Quantum Mechanics to Nanomaterial Structures; 2.1 Introduction; 2.2 The de Broglie Relation; 2.3 Wave Functions and Schro?dinger Equation; 2.4 Dirac Notation; 2.4.1 Action of a Linear Operator on a Bra; 2.4.2 Eigenvalues and Eigenfunctions of an Operator; 2.4.3 The Dirac d-Function 327 $a2.4.4 Fourier Series and Fourier Transform in Quantum Mechanics2.5 Variational Method; 2.6 Stationary States of a Particle in a Potential Step; 2.7 Potential Barrier with a Finite Height; 2.8 Potential Well with an Infinite Depth; 2.9 Finite Depth Potential Well; 2.10 Unbound Motion of a Particle (E > V0) in a Potential Well With a Finite Depth; 2.11 Triangular Potential Well; 2.12 Delta Function Potentials; 2.13 Transmission in Finite Double Barrier Potential Wells; 2.14 Envelope Function Approximation; 2.15 Periodic Potential; 2.15.1 Bloch's Theorem; 2.15.2 The Kronig-Penney Model 327 $a2.15.3 One-Electron Approximation in a Periodic Dirac d-Function2.15.4 Superlattices; 2.16 Effective Mass; 2.17 Summary; Problems; Bibliography; 3 Density of States in Semiconductor Materials; 3.1 Introduction; 3.2 Distribution Functions; 3.3 Maxwell-Boltzmann Statistic; 3.4 Fermi-Dirac Statistics; 3.5 Bose-Einstein Statistics; 3.6 Density of States; 3.7 Density of States of Quantum Wells, Wires, and Dots; 3.7.1 Quantum Wells; 3.7.2 Quantum Wires; 3.7.3 Quantum Dots; 3.8 Density of States of Other Systems; 3.8.1 Superlattices 327 $a3.8.2 Density of States of Bulk Electrons in the Presence of a Magnetic Field3.8.3 Density of States in the Presence of an Electric Field; 3.9 Summary; Problems; Bibliography; 4 Optical Properties; 4.1 Fundamentals; 4.2 Lorentz and Drude Models; 4.3 The Optical Absorption Coefficient of the Interband Transition in Direct Band Gap Semiconductors; 4.4 The Optical Absorption Coefficient of the Interband Transition in Indirect Band Gap Semiconductors; 4.5 The Optical Absorption Coefficient of the Interband Transition in Quantum Wells 327 $a4.6 The Optical Absorption Coefficient of the Interband Transition in Type II Superlattices 330 $a"This book introduces the basic concepts of nanomaterials and devices fabricated from these nanomaterials. Explicates cutting-edge topics and concepts in the field, such as plasmon-photon interaction and coupling of photonic crystals to devices with the purpose of enhancing the device performance. Provides a thorough background in quantum mechanics/physics. Successfully details the interrelationship between quantum mechanics and nanomaterials"--$cProvided by publisher. 606 $aNanostructured materials 606 $aOptoelectronic devices 606 $aSemiconductor nanocrystals 606 $aQuantum electronics 615 0$aNanostructured materials. 615 0$aOptoelectronic devices. 615 0$aSemiconductor nanocrystals. 615 0$aQuantum electronics. 676 $a620.1/15 676 $a620.115 686 $aTEC008090$2bisacsh 700 $aManasreh$b Mahmoud Omar$0888312 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910139565903321 996 $aIntroduction to nanomaterials and devices$91984549 997 $aUNINA