LEADER 05220nam 2200649Ia 450 001 9910139513403321 005 20170815145455.0 010 $a1-282-25389-1 010 $a9786613814548 010 $a0-470-61136-7 010 $a0-470-39397-1 035 $a(CKB)2550000000005869 035 $a(EBL)477657 035 $a(OCoLC)520990448 035 $a(SSID)ssj0000340650 035 $a(PQKBManifestationID)11947680 035 $a(PQKBTitleCode)TC0000340650 035 $a(PQKBWorkID)10388213 035 $a(PQKB)11440112 035 $a(MiAaPQ)EBC477657 035 $a(EXLCZ)992550000000005869 100 $a20080619d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aMultiscale modeling of heterogenous materials$b[electronic resource] $efrom microstructure to macro-scale properties /$fedited by Oana Cazacu 210 $aLondon $cISTE Ltd. ;$aHoboken, NJ $cJ. Wiley$d2008 215 $a1 online resource (361 p.) 225 1 $aISTE ;$vv.49 300 $aDescription based upon print version of record. 311 $a1-84821-047-7 320 $aIncludes bibliographical references and index. 327 $aMultiscale Modeling of Heterogenous Materials; Table of Contents; Foreword; Chapter 1. Accounting for Plastic Strain Heterogenities in Modeling Polycrystalline Plasticity: Microstructure-based Multi-laminate Approaches; 1.1. Introduction; 1.2. Polycrystal morphology in terms of grain and sub-grain boundaries; 1.2.1. Some evidence of piece-wise regularity for grain boundaries; 1.2.2. Characteristics of plastic-strain due to sub-grain boundaries; 1.3. Sub-boundaries and multi-laminate structure for heterogenous plasticity 327 $a1.3.1. Effective moduli tensor and Green operator of multi-laminate structures1.3.2. Multi-laminate structures and piece-wise homogenous plasticity; 1.4. Application to polycrystal plasticity within the affine approximation; 1.4.1. Constitutive relations; 1.4.2. Fundamental properties for multi-laminate modeling of plasticity; 1.5. Conclusion; 1.6. Bibliography; Chapter 2. Discrete Dislocation Dynamics: Principles and Recent Applications; 2.1. Discrete Dislocation Dynamics as a link in multiscale modeling; 2.2. Principle of Discrete Dislocation Dynamics 327 $a2.3. Example of scale transition: from DD to Continuum Mechanics2.3.1. Introduction to a dislocation density model; 2.3.1.1. Constitutive equations of a dislocation based model of crystal plasticity; 2.3.1.2. Parameter identification; 2.3.1.3. Application to copper simulations; 2.3.1.4. Taking into account kinematic hardening; 2.4. Example of DD analysis: simulations of crack initiation in fatigue; 2.4.1. Case of single phase AISI 31GL; 2.5. Conclusions; 2.6. Bibliography; Chapter 3. Multiscale Modeling of Large Strain Phenomena in Polycrystalline Metals 327 $a3.1. Implementation of polycrystal plasticity in finite element analysis3.2. Kinematics and constitutive framework; 3.3. Forward Euler algorithm; 3.4. Validation of the forward Euler algorithm; 3.5. Time step issues in the forward Euler scheme; 3.6. Comparisons of CPU times: the rate tangent versus the forward Euler methods; 3.7. Conclusions; 3.8. Acknowledgements; 3.9. Bibliography; Chapter 4. Earth Mantle Rheology Inferred from Homogenization Theories; 4.1. Introduction; 4.2. Grain local behavior; 4.3. Full-field reference solutions; 4.4. Mean-field estimates 327 $a4.4.1. Basic features of mean-field theories4.4.2. Results; 4.5. Concluding observations; 4.6. Bibliography; Chapter 5. Modeling Plastic Anistropy and Strength Differential Effects in Metallic Materials; 5.1. Introduction; 5.2. Isotropic yield criteria; 5.2.1. Pressure insensitive materials deforming by slip; 5.2.2. Pressure insensitive materials deforming by twinning; 5.2.3. Pressure insensitive materials with non-Schmid effects; 5.2.4. Pressure sensitive materials; 5.2.5. SD effect and plastic flow; 5.3. Anisotropic yield criteria with SD effects 327 $a5.3.1. Cazacu and Barlat [CAZ 04] orthotropic yield criterion 330 $aA material's various proprieties is based on its microscopic and nanoscale structures. This book provides an overview of recent advances in computational methods for linking phenomena in systems that span large ranges of time and spatial scales. Particular attention is given to predicting macroscopic properties based on subscale behaviors. Given the book's extensive coverage of multi-scale methods for modeling both metallic and geologic materials, it will be an invaluable reading for graduate students, scientists, and practitioners alike. 410 0$aISTE 606 $aInhomogeneous materials$xMathematical models 606 $aMaterials 608 $aElectronic books. 615 0$aInhomogeneous materials$xMathematical models. 615 0$aMaterials. 676 $a620.1/1015118 676 $a620.11015118 701 $aCazacu$b Oana$0960604 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910139513403321 996 $aMultiscale modeling of heterogenous materials$92250775 997 $aUNINA