LEADER 05457nam 2200697Ia 450 001 9910139498403321 005 20240505203943.0 010 $a1-282-38524-0 010 $a9786612385247 010 $a3-527-62898-3 010 $a3-527-62899-1 035 $a(CKB)2550000000002911 035 $a(EBL)481279 035 $a(OCoLC)606741552 035 $a(SSID)ssj0000366116 035 $a(PQKBManifestationID)11285454 035 $a(PQKBTitleCode)TC0000366116 035 $a(PQKBWorkID)10415032 035 $a(PQKB)11016952 035 $a(MiAaPQ)EBC481279 035 $a(Au-PeEL)EBL481279 035 $a(CaPaEBR)ebr10351176 035 $a(CaONFJC)MIL238524 035 $a(EXLCZ)992550000000002911 100 $a20090825d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSpins in optically active quantum dots $econcepts and methods /$fOliver Gywat, Hubert J. Krenner, and Jesse Berezovsky 205 $a1st ed. 210 $aWeinheim $cWiley-VCH$dc2010 215 $a1 online resource (221 p.) 300 $aDescription based upon print version of record. 311 $a3-527-40806-1 320 $aIncludes bibliographical references and index. 327 $aSpins in Optically Active Quantum Dots; Contents; Preface; 1 Introduction; 1.1 Spin; 1.2 Spin-1/2 Basics; 1.3 Quantum Dots; 1.3.1 Spin-Based Quantum Information Processing with Artificial Atoms; 1.3.2 Optically Active Quantum Dots; 1.3.3 "Natural" Quantum Dots; 2 Optically Active Quantum Dots: Single and Coupled Structures; 2.1 Epitaxial Quantum Dots; 2.2 "Natural" Quantum Dots Revisited; 2.2.1 Structure and Fabrication; 2.2.2 Energy Levels and Optical Transitions; 2.3 Self-Assembled Quantum Dots; 2.3.1 Strain-Driven Self-Alignment; 2.3.2 Optical Properties and QD Shell Structure 327 $a2.4 Alternative Epitaxial Quantum Dot Systems2.4.1 Electrically Gated Quantum Dots; 2.4.2 Advanced MBE Techniques; 2.4.3 Nanowire Quantum Dots; 2.5 Chemically-Synthesized Quantum Dots; 2.5.1 Colloidal Growth; 2.5.2 Energy Level Structure and Optical Properties; 3 Theory of Confined States in Quantum Dots; 3.1 Band Structure of III-V Semiconductors; 3.1.1 Effective Mass of Crystal Electrons; 3.1.2 Spin-Orbit Interaction; 3.1.3 Band Structure Close to the Band Edges; 3.1.4 Band-Edge Bloch States; 3.1.5 Coupling of Bands and the Luttinger Hamiltonian 327 $a3.1.6 Splitting of Heavy Hole and Light Hole Bands3.1.7 Electrons and Holes; 3.2 Quantum Confinement; 3.2.1 One-Dimensional Confinement; 3.2.2 Quantum Dot Confinement; 3.3 Spherical Quantum Dot Confinement; 3.3.1 Conduction-Band States; 3.3.2 Valence Band States; 3.3.3 Deviations from a Spherical Dot Shape; 3.4 Parabolic Quantum Dot Confinement; 3.5 Extensions of the Noninteracting Single-Electron Picture; 3.5.1 Symmetry of Many-Particle States in Quantum Dots; 3.5.2 Coulomb Interaction; 3.5.3 The Concept of Excitons in Quantum Dots; 3.5.4 Carrier Configurations in the s Shell and Energies 327 $a3.6 Few-Carrier Spectra of Self-Assembled Quantum Dots3.6.1 From Ensemble to Single Quantum Dot Spectra; 3.6.2 Transition Energies of Few-Particle States; 4 Integration of Quantum Dots in Electro-optical Devices; 4.1 Tuning Quantum Dots by Electric Fields; 4.1.1 Semiconductor Diodes; 4.1.2 Voltage-Controlled Number of Charges; 4.1.3 Optically Probing Coulomb Blockade; 4.1.4 Quantum Confined Stark Effect; 4.2 Optical Cavities; 5 Quantum Dots Interacting With the Electromagnetic Field; 5.1 Hamiltonian for Radiative Transitions of Quantum Dots; 5.1.1 Electromagnetic Field 327 $a5.1.2 Nonrelativistic Electron-Photon Interaction5.1.3 Total Hamiltonian for a Quantum Dot and a Field; 5.2 Electric Dipole Transitions; 5.2.1 Electric Dipole Selection Rules; 5.2.2 Interband Transitions in a III-V Semiconductor; 5.2.3 Equivalent Classical Electric Dipole Picture; 5.2.4 Semiclassical Interaction with a Laser Field; 5.3 Magnetic Dipole Transitions; 5.4 Generalized Master Equation of the Driven Two-Level System; 5.4.1 The Driven Two-Level System; 5.4.2 System-Reservoir Approach; 5.5 Cavity Quantum Electrodynamics; 5.5.1 Strong Coupling Regime; 5.5.2 Weak Coupling Regime 327 $a5.6 Dispersive Interaction 330 $aFilling a gap in the literature, this up-to-date introduction to the field provides an overview of current experimental techniques, basic theoretical concepts, and sample fabrication methods. Following an introduction, this monograph deals with optically active quantum dots and their integration into electro-optical devices, before looking at the theory of quantum confined states and quantum dots interacting with the radiation field. Final chapters cover spin-spin interaction in quantum dots as well as spin and charge states, showing how to use single spins for break-through quantum comput 606 $aQuantum dots$xOptical properties 606 $aNuclear spin 606 $aQuantum dots 615 0$aQuantum dots$xOptical properties. 615 0$aNuclear spin. 615 0$aQuantum dots. 676 $a621.38152 700 $aGywat$b Oliver$0522074 701 $aBerezovsky$b Jesse$0522076 701 $aKrenner$b Hubert J$0522075 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910139498403321 996 $aSpins in optically active quantum dots$9835066 997 $aUNINA