LEADER 05528nam 2200697Ia 450 001 9910139496003321 005 20170815144651.0 010 $a1-282-16504-6 010 $a9786612165047 010 $a0-470-61117-0 010 $a0-470-39380-7 035 $a(CKB)2550000000005899 035 $a(EBL)477688 035 $a(OCoLC)471135418 035 $a(SSID)ssj0000337688 035 $a(PQKBManifestationID)11252241 035 $a(PQKBTitleCode)TC0000337688 035 $a(PQKBWorkID)10294580 035 $a(PQKB)11234337 035 $a(MiAaPQ)EBC477688 035 $a(PPN)158735730 035 $a(EXLCZ)992550000000005899 100 $a20071106d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe finite element method for electromagnetic modeling$b[electronic resource] /$fedited by Gerard Meunier 210 $aLondon $cISTE ;$aHoboken, NJ, USA $cWiley$d2008 215 $a1 online resource (618 p.) 225 1 $aISTE ;$vv.33 300 $aDescription based upon print version of record. 311 $a1-84821-030-2 320 $aIncludes bibliographical references and index. 327 $aThe Finite Element Method for Electromagnetic Modeling; Table of Contents; Chapter 1. Introduction to Nodal Finite Elements; 1.1. Introduction; 1.1.1. The finite element method; 1.2. The 1D finite element method; 1.2.1. A simple electrostatics problem; 1.2.2. Differential approach; 1.2.3. Variational approach; 1.2.4. First-order finite elements; 1.2.5. Second-order finite elements; 1.3. The finite element method in two dimensions; 1.3.1. The problem of the condenser with square section; 1.3.2. Differential approach; 1.3.3. Variational approach 327 $a1.3.4. Meshing in first-order triangular finite elements1.3.5. Finite element interpolation; 1.3.6. Construction of the system of equations by the Ritz method; 1.3.7. Calculation of the matrix coefficients; 1.3.8. Analysis of the results; 1.3.9. Dual formations, framing and convergence; 1.3.10. Resolution of the nonlinear problems; 1.3.11. Alternative to the variational method: the weighted residues method; 1.4. The reference elements; 1.4.1. Linear reference elements; 1.4.2. Surface reference elements; 1.4.3. Volume reference elements; 1.4.4. Properties of the shape functions 327 $a1.4.5. Transformation from reference coordinates to domain coordinates.1.4.6. Approximation of the physical variable; 1.4.7. Numerical integrations on the reference elements; 1.4.8. Local Jacobian derivative method; 1.5. Conclusion; 1.6. References; Chapter 2. Static Formulations: Electrostatic, Electrokinetic, Magnetostatics; 2.1. Problems to solve; 2.1.1. Maxwell's equations; 2.1.2. Behavior laws of materials; 2.1.3. Boundary conditions; 2.1.4. Complete static models; 2.1.5. The formulations in potentials; 2.2. Function spaces in the fields and weak formulations 327 $a2.2.1. Integral expressions: introduction2.2.2. Definitions of function spaces; 2.2.3. Tonti diagram: synthesis scheme of a problem; 2.2.4. Weak formulations; 2.3. Discretization of function spaces and weak formulations; 2.3.1. Finite elements; 2.3.2. Sequence of discrete spaces; 2.3.3. Gauge conditions and source terms in discrete spaces; 2.3.4. Weak discrete formulations; 2.3.5. Expression of global variables; 2.4. References; Chapter 3. Magnetodynamic Formulations; 3.1. Introduction; 3.2. Electric formulations; 3.2.1. Formulation in electric field 327 $a3.2.2. Formulation in combined potentials ? - ?3.2.3. Comparison of the formulations in field and in combined potentials; 3.3. Magnetic formulations; 3.3.1. Formulation in magnetic field; 3.3.2. Formulation in combined potentials t - ?; 3.3.3. Numerical example; 3.4. Hybrid formulation; 3.5. Electric and magnetic formulation complementarities; 3.5.1. Complementary features; 3.5.2. Concerning the energy bounds; 3.5.3. Numerical example; 3.6. Conclusion; 3.7. References; Chapter 4. Mixed Finite Element Methods in Electromagnetism; 4.1. Introduction; 4.2. Mixed formulations in magnetostatics 327 $a4.2.1. Magnetic induction oriented formulation 330 $aWritten by specialists of modeling in electromagnetism, this book provides a comprehensive review of the finite element method for low frequency applications. Fundamentals of the method as well as new advances in the field are described in detail.Chapters 1 to 4 present general 2D and 3D static and dynamic formulations by the use of scalar and vector unknowns and adapted interpolations for the fields (nodal, edge, face or volume).Chapter 5 is dedicated to the presentation of different macroscopic behavior laws of materials and their implementation in a finite element context: anisotrop 410 0$aISTE 606 $aElectromagnetic devices$xMathematical models 606 $aElectromagnetism$xMathematical models 606 $aEngineering mathematics 606 $aFinite element method 615 0$aElectromagnetic devices$xMathematical models. 615 0$aElectromagnetism$xMathematical models. 615 0$aEngineering mathematics. 615 0$aFinite element method. 676 $a621.301/51825 676 $a621.30151825 701 $aMeunier$b Gerard$0875560 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910139496003321 996 $aThe finite element method for electromagnetic modeling$91954884 997 $aUNINA