LEADER 02758nam 2200577Ia 450 001 9910139473903321 005 20200520144314.0 010 $a3-642-11172-6 024 7 $a10.1007/978-3-642-11172-3 035 $a(CKB)2550000000015847 035 $a(SSID)ssj0000399653 035 $a(PQKBManifestationID)11245785 035 $a(PQKBTitleCode)TC0000399653 035 $a(PQKBWorkID)10376322 035 $a(PQKB)10758501 035 $a(DE-He213)978-3-642-11172-3 035 $a(MiAaPQ)EBC3065554 035 $z(PPN)258846003 035 $a(PPN)149080964 035 $a(EXLCZ)992550000000015847 100 $a20091126d2010 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aLine groups in physics $etheory and applications to nanotubes and polymers /$fM. Damnjanovic, I. Milosevic 205 $a1st ed. 2010. 210 $aHeidelberg $cSpringer$dc2010 215 $a1 online resource (XII, 200p. 76 illus., 38 illus. in color.) 225 1 $aLecture notes in physics,$x0075-8450 ;$v801 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-11171-8 320 $aIncludes bibliographical references and index. 327 $aLine Groups Structure -- Symmetrical Compounds -- Irreducible Representations -- Tensors -- Magnetic Line Groups -- Vibrational Analysis -- Applications -- Nanotubes. 330 $aThis volume gives a detailed and up-to-date overview of the line groups, the groups that describe the symmetry of quasi-one dimensional crystals. Nanotubes, nanowires, nanosprings, nanorods, and polymers are examples remarkable enough to have kept nanoscience as a leading field within material science and solid state physics for more than fifteen years now. The authors present the mathematical foundations, including classifications of the line groups, quasi one-dimensional crystals and quantum numbers, together with important applications. Extensive illustrations related to the physics of nanotubes make the book essential reading in this field above all. The book clearly demonstrates how symmetry is a most profound property of nature and contains valuable results that are published here for the first time. 410 0$aLecture notes in physics ;$v801. 606 $aNanostructured materials 606 $aSymmetry groups 615 0$aNanostructured materials. 615 0$aSymmetry groups. 676 $a530.411 700 $aDamnjanovic$b M$g(Milan),$f1953-$01755402 701 $aMilosevic$b I$g(Ivanka)$0515325 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910139473903321 996 $aLine groups in physics$94192174 997 $aUNINA