LEADER 01021nam0-2200349---450- 001 990009930420403321 005 20150206095102.0 010 $a978-88-339-2352-9 035 $a000993042 035 $aFED01000993042 035 $a(Aleph)000993042FED01 035 $a000993042 100 $a20150119d2012----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay-------001yy 200 1 $a<>Formazione psicoanalitica$e1938-68$fAnna Freud$gprefazione di Giovanni Sias$gtraduzione di Ada Cinato 210 $aTorino$cBollati Boringhieri$d2012 215 $a141 p.$d18 cm 225 1 $aBiblioteca Bollati Boringhieri$v218 610 0 $aPsicoanalisi 676 $a150.1952$v21$zita 700 1$aFreud,$bAnna$0159314 702 1$aSias,$bGiovanni 702 1$aCinato,$bAda 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a990009930420403321 952 $aCollez. 2463 (218)$b50888$fFSPBC 959 $aFSPBC 996 $aFormazione psicoanalitica$9821802 997 $aUNINA LEADER 05426nam 2200661Ia 450 001 9910139467003321 005 20170809152954.0 010 $a1-282-16521-6 010 $a9786612165214 010 $a0-470-61141-3 010 $a0-470-39403-X 035 $a(CKB)2550000000005846 035 $a(EBL)477634 035 $a(OCoLC)520990452 035 $a(SSID)ssj0000337690 035 $a(PQKBManifestationID)11276867 035 $a(PQKBTitleCode)TC0000337690 035 $a(PQKBWorkID)10289321 035 $a(PQKB)11739093 035 $a(MiAaPQ)EBC477634 035 $a(EXLCZ)992550000000005846 100 $a20080605d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFinite element simulation of heat transfer$b[electronic resource] /$fJean-Michel Bergheau, Roland Fortunier 210 $aLondon $cISTE Ltd. ;$aHoboken, N.J. $cJ. Wiley$dc2008 215 $a1 online resource (281 p.) 225 1 $aISTE ;$vv.55 300 $aDescription based upon print version of record. 311 $a1-84821-053-1 320 $aIncludes bibliographical references and index. 327 $aFinite Element Simulation of Heat Transfer; Table of Contents; Introduction; PART 1. Steady State Conduction; Chapter 1. Problem Formulation; 1.1. Physical modeling; 1.1.1. Thermal equilibrium equation; 1.1.2. Fourier law; 1.1.3. Boundary conditions; 1.2. Mathematical analysis; 1.2.1. Weighted residual method; 1.2.2.Weak integral formulation; 1.3. Working example; 1.3.1. Physical modeling; 1.3.2. Direct methods; 1.3.2.1. Analytical integration; 1.3.2.2. The finite difference method; 1.3.3. Collocation methods; 1.3.3.1. Point collocation; 1.3.3.2. Sub-domain collocation; 1.3.4.Galerkin method 327 $a1.3.4.1. Polynomial functions1.3.4.2. Piecewise linear functions; Chapter 2. The Finite Element Method; 2.1. Finite element approximation; 2.1.1.Mesh; 2.1.2. Nodal approximation; 2.2.Discrete problem formulation; 2.2.1. Element quantities; 2.2.2. Assembly; 2.3. Solution; 2.3.1. Application of temperature boundary conditions; 2.3.2. Linear system solution; 2.3.2.1. Direct methods; 2.3.2.2. Iterative methods; 2.3.3. Storing the linear system matrix; 2.3.4. Analysis of results; 2.3.4.1. Smoothing the heat flux density; 2.3.4.2. Result accuracy; 2.4. Working example 327 $a2.4.1. Finite element approximation2.4.1.1.Mesh; 2.4.1.2. Nodal approximation; 2.4.2.Discrete problem formulation; 2.4.2.1. Element quantities; 2.4.2.2. Assembly; 2.4.3. Solution; 2.4.3.1. Application of boundary conditions; 2.4.3.2. Solution; Chapter 3. Isoparametric Finite Elements; 3.1. Definitions; 3.1.1. Reference element; 3.1.1.1. Triangular element with linear transformation functions; 3.1.1.2. Quadrangle element with linear transformation functions; 3.1.1.3. Quadrangle element with quadratic transformation functions; 3.1.2. Isoparametric elements 327 $a3.1.3. Interpolation function properties3.2. Calculation of element quantities; 3.2.1. Expression in the reference frame; 3.2.2. Gaussian quadrature; 3.2.2.1. 1D numerical integration; 3.2.2.2. 2D and 3D numerical integration; 3.3. Some finite elements; PART 2. Transient State, Non-linearities, Transport Phenomena; Chapter 4. Transient Heat Conduction; 4.1. Problem formulation; 4.1.1. The continuous problem; 4.1.2. Finite element approximation; 4.1.3. Linear case; 4.2.Time integration; 4.2.1. Modal method; 4.2.1.1. Determining the modal basis; 4.2.1.2. Projection on the modal basis 327 $a4.2.2.Direct time integration4.2.3. Accuracy and stability of a direct integration algorithm; 4.2.3.1. Accuracy; 4.2.3.2. Stability; 4.2.3.3. Simplified analysis of the stability condition; 4.2.4. Practical complementary rules; 4.2.4.1. Space oscillations during thermal shock simulation; 4.2.4.2. Discrete maximum principle; 4.2.4.3. Initial temperatures during thermal contact simulation; 4.3. Working example; 4.3.1. Physical modeling and approximation; 4.3.2. Numerical applications; Chapter 5. Non-linearities; 5.1. Formulation and solution techniques; 5.1.1. Formulation 327 $a5.1.2. Non-linear equation system solution methods 330 $aThis book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re 410 0$aISTE 606 $aHeat$xTransmission$xMathematical models 606 $aFinite element method 608 $aElectronic books. 615 0$aHeat$xTransmission$xMathematical models. 615 0$aFinite element method. 676 $a621.402/2015118 676 $a621.4022015118 700 $aBergheau$b Jean-Michel$0880054 701 $aFortunier$b Roland$0880055 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910139467003321 996 $aFinite element simulation of heat transfer$91965120 997 $aUNINA