LEADER 05365nam 2200661Ia 450 001 9910139397403321 005 20230725041542.0 010 $a1-282-81681-0 010 $a9786612816819 010 $a0-470-82595-2 010 $a0-470-82596-0 035 $a(CKB)2480000000008386 035 $a(EBL)624360 035 $a(OCoLC)676969410 035 $a(SSID)ssj0000438343 035 $a(PQKBManifestationID)11294379 035 $a(PQKBTitleCode)TC0000438343 035 $a(PQKBWorkID)10452628 035 $a(PQKB)11225875 035 $a(MiAaPQ)EBC624360 035 $a(Au-PeEL)EBL624360 035 $a(CaPaEBR)ebr10419340 035 $a(CaONFJC)MIL281681 035 $a(EXLCZ)992480000000008386 100 $a20100629d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIntroduction to organic semiconductor heterojunctions$b[electronic resource] /$fDonghang Yan, Haibo Wang, Baoxun Du 210 $aSingapore $cWiley$dc2010 215 $a1 online resource (262 p.) 300 $aDescription based upon print version of record. 311 $a0-470-82594-4 320 $aIncludes bibliographical references and index. 327 $aINTRODUCTION TO ORGANIC SEMICONDUCTOR HETEROJUNCTIONS; Contents; Foreword; Preface; About the Authors; 1 Organic Heterostructure in Electronic Devices; 1.1 Organic Light-Emitting Diodes; 1.2 Ambipolar Organic Field-Effect Transistors; 1.3 Organic Photovoltaic Cells; 1.4 Parameters in Thin-Film Transistors; References; 2 Weak Epitaxy Growth of Organic Semiconductor Thin Film; 2.1 Fabrication of Organic Ultrathin Film by Vacuum Deposition; 2.1.1 Organic Thin Film of Molecular Beam Epitaxy; 2.1.2 Organic Thin Film of Vapor Deposition; 2.1.3 Oriented Organic Molecular Thin Film 327 $a2.1.4 Organic Molecular Thin Film of Vapor Deposition Controlled by Kinetics and Thermodynamics2.2 Vapor-Deposited Thin Film of Rod-Like and Banana-Shaped Organic Molecules; 2.2.1 Vapor-Deposited Thin Film of Pentacene; 2.2.2 Vapor-Deposited Thin Film of ?-Hexathiophene; 2.2.3 Vapor-Deposited Thin Film of Banana-Shaped Organic Molecule; 2.2.4 Vapor-Deposited Thin Film of Para-Sexiphenyl; 2.3 Heteroepitaxy of Disk-Like Organic Molecule on Para-Sexiphenyl Ultrathin Film by Vapor Deposition; 2.3.1 p-6P and Planar Metal Phthalocyanines; 2.3.2 p-6P and Nonplanar Metal Phthalocyanine 327 $a2.3.3 Heteroepitaxy Growth of Perylene Diimide Derivatives on p-6P2.4 Evolution of Film Growth 2,5-Bis (4-Biphenylyl) Bithiophene (BP2T); 2.4.1 Growth Behavior of BP2T Thin Films; 2.4.2 Heteroepitaxy Growth of ZnPc on BP2T Thin Films; 2.5 Heteroepitaxy Between Disk-Like Molecules; 2.5.1 Stability of H2Pc Film Fabricated by WEG; 2.5.2 WEG of H2Pc Film by Kinetic Control; 2.5.3 Heteroepitaxy Growth of F16CuPc on H2Pc Thin Film; 2.6 Perspectives; 2.6.1 Nucleation Process of Organic Ultrathin Film; 2.6.2 Contacted and Oriented Process of the Nucleus on the Substrate 327 $a2.6.3 Liquid-Crystal-Like Behavior and Flexible Boundary of Organic Ultrathin Film2.6.4 Extent of Liquid-Crystal-Like Behavior of Organic Ultrathin Film; 2.6.5 Weak Epitaxy Growth of Organic Ultrathin Film; References; 3 Interfacial Electronic Structure in Organic Semiconductor Heterojunctions; 3.1 Ambipolar Organic Transistors and Organic Heterostructures; 3.2 CuPc/F16CuPc Heterojunction Effect; 3.2.1 Normally On Operation Mode of CuPc/F16CuPc Heterojunction Transistors; 3.2.2 Experiment of Planar Heterojunction Diode; 3.2.3 Carrier Accumulation at CuPc/F16CuPc Heterojunction Interface 327 $a3.2.4 CuPc/F16CuPc Heterojunction Diodes with Reverse Rectifying Characteristics3.2.5 Charge Accumulation Thickness in CuPc/F16CuPc Heterojunction Films; 3.2.6 Direct Measurement of CuPc/F16CuPc Interfacial Electronic Structure by UPS; 3.2.7 Difference in UPS Measurement Results; 3.3 Anderson Rule and Ideal Interfacial Electronic Structure of CuPc/F16CuPc Heterojunction; 3.3.1 Anderson Affinity Rule; 3.3.2 Ideal Interfacial Electronic Structure for the CuPc/F16CuPc Heterojunction; 3.4 Organic and Inorganic Semiconductor Heterojunction 327 $a3.4.1 Comparison of the Organic Accumulation Heterojunction and Inorganic p-n Homojunction 330 $aIt is well known that most important electronic devices use Schottky junctions and heterojunctions. Unfortunately there is not an advanced book introducing heterojunctions systematically. Introduction to Organic Semiconductor Heterojunctions fills the gap. In this book, the authors provide a comprehensive discussion and systematic introduction on the state-of-the-art technologies as well as application of organic semiconductor heterojunctions. First book to systematically introduce organic heterojunctionsArms readers with theoretical, experimental and appl 606 $aHeterojunctions 606 $aOrganic semiconductors 615 0$aHeterojunctions. 615 0$aOrganic semiconductors. 676 $a621.3815/2 700 $aYan$b Donghang$0882374 701 $aWang$b Haibo$f1978-$0882375 701 $aDu$b Baoxun$0882376 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910139397403321 996 $aIntroduction to organic semiconductor heterojunctions$91970909 997 $aUNINA