LEADER 01546nam--2200385---45-- 001 990000375710203316 010 $a3-540-41481-9 035 $a0037571 035 $aUSA010037571 035 $a(ALEPH)000037571USA01 035 $a0037571 100 $a20010327d2000----km-y0ITAy0103-------ba 101 0 $aENG 102 $aDE 200 1 $aResearch issues in structured and semistructured database programming$e7th International workshop on database progamming languages, DBPL'99$eKinloch Rannoch, UK, September 1-3, 1999$eRevised papers$fRichard Connor ... [et al.] (eds.) 210 $aBerlin$cSpringer-Verlag$dcopyr. 2000 215 $aIX, 323 p.$cill.$d20 cm. 225 2 $aLecture notes in computer science$v1949 410 $12001$aLecture notes in computer science$v1949 610 1 $aArchivi di dati$aCongressi$a1999 610 1 $aElaboratori elettronici$aProgammazione$aCongressi$a1999 610 1 $aCongressi$aKinloch Rannoch (UK) 702 1$aConnor,$bRichard 710 12$aInternational workshop on database programming languages, DBPL'99 <7. ; Kinloch Rannoch, UK>$0543998 801 0$aITA$bCBS$gISBD 912 $a990000375710203316 951 $a001 LNCS (1949)$b0026036 CBS$c001$d00104424 959 $aBK 969 $aSCI 979 $aALANDI$b90$c20010327$lUSA01$h1140 979 $aALANDI$b90$c20010518$lUSA01$h1119 979 $c20020403$lUSA01$h1645 979 $aPATRY$b90$c20040406$lUSA01$h1626 996 $aResearch issues in structured and semistructured database programming$9875255 997 $aUNISA LEADER 05336nam 2200661Ia 450 001 9910139339603321 005 20200520144314.0 010 $a9786613813954 010 $a9781282253308 010 $a1282253301 010 $a9781118033265 010 $a1118033264 010 $a9781118031513 010 $a1118031512 035 $a(CKB)2560000000060926 035 $a(EBL)661619 035 $a(OCoLC)705538685 035 $a(SSID)ssj0000484468 035 $a(PQKBManifestationID)11344113 035 $a(PQKBTitleCode)TC0000484468 035 $a(PQKBWorkID)10594453 035 $a(PQKB)10130712 035 $a(MiAaPQ)EBC661619 035 $a(Perlego)2768180 035 $a(EXLCZ)992560000000060926 100 $a19901017d1991 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFoundations of coding $etheory and applications of error-correcting codes, with an introduction to cryptography and information theory /$fJiri Adamek 210 $aChichester ;$aNew York $cWiley$dc1991 215 $a1 online resource (356 p.) 300 $aDescription based upon print version of record. 311 08$a9780471621874 311 08$a0471621870 320 $aIncludes bibliographical references and index. 327 $aFoundations of Coding: Theory and Applications of Error-Correcting Codes with an Introduction to Cryptography and Information Theory; Contents; CONTENTS; Introduction; Part I Coding and Information Theory; 1 Coding and Decoding; 1.1 Coding; 1.2 Unique Decoding; 1.3 Block Codes and Instantaneous Codes; 1.4 Some Important Block Codes; 1.5 Construction of Instantaneous Codes; 1.6 Kraft's Inequality; 1.7 McMillan's Theorem; Exercises; Notes; 2 Huffman Codes; 2.1 Information Source; 2.2 Huffman Codes; 2.3 Construction of Binary Huffman Codes; 2.4 Example; 2.5 Construction of General Huffman Codes 327 $aExercisesNotes; 3 Data Compression and Entropy; 3.1 An Example of Data Compression; 3.2 The Idea of Entropy; 3.3 The Definition of Entropy; 3.4 An Example; 3.5 Maximum and Minimum Entropy; 3.6 Extensions of a Source; 3.7 Entropy and Average Length; 3.8 Shannon's Noiseless Coding Theorem; 3.9 Concluding Remarks; Exercises; Notes; 4 Reliable Communication Through Unreliable Channels; 4.1 Binary Symmetric Channels; 4.2 Information Rate; 4.3 An Example of Increased Reliability; 4.4 Hamming Distance; 4.5 Detection of Errors; 4.6 Correction of Errors; 4.7 Channel Capacity 327 $a4.8 Shannon's Fundamental TheoremExercises; Notes; Part II Error-Correcting Codes; 5 Binary Linear Codes; 5.1 Binary Addition and Multiplication; 5.2 Codes Described by Equations; 5.3 Binary Linear Codes; 5.4 Parity Check Matrix; 5.5 Hamming Codes-Perfect Codes for Single Errors; 5.6 The Probability of Undetected Errors; Exercises; Notes; Notes; 6 Groups and Standard Arrays; 6.1 Commutative Groups; 6.2 Subgroups and Cosets; 6.3 Decoding by Standard Arrays; Exercises; 7 Linear Algebra; 7.1 Fields and Rings; 7.2 The Fields Zp; 7.3 Linear Spaces; 7.4 Finite-Dimensional Spaces; 7.5 Matrices 327 $a7.6 Operations on Matrices7.7 Orthogonal Complement; Exercises; Notes; 8 Linear Codes; 8.1 Generator Matrix; 8.2 Parity Check Matrix; 8.3 Syndrome; 8.4 Detection and Correction of Errors; 8.5 Extended Codes and Other Modifications; 8.6 Simultaneous Correction and Detection of Errors; 8.7 MacWilliams Identity; Exercises; Notes; 9 Reed-Muller Codes: Weak Codes with Easy Decoding; 9.1 Boolean Functions; 9.2 Boolean Polynomials; 9.3 Reed-Muller Codes; 9.4 Geometric Interpretation: Three-Dimensional Case; 9.5 Geometric Interpretation: General Case; 9.6 Decoding Reed-Muller Codes; Exercises; Notes 327 $a10 Cyclic Codes10.1 Generator Polynomial; 10.2 Encoding Cyclic Codes; 10.3 Parity Check Polynomial; 10.4 Decoding Cyclic Codes; 10.5 Error-Trapping Decoding; 10.6 Golay Code: A Perfect Code for Triple Errors; 10.7 Burst Errors; 10.8 Fire Codes: High-Rate Codes for Burst Errors; Exercises; Notes; 11 Polynomials and Finite Fields; 11.1 Zeros of Polynomials; 11.2 Algebraic Extensions of a Field; 11.3 Galois Fields; 11.4 Primitive Elements; 11.5 The Characteristic of a Field; 11.6 Minimal Polynomial; 11.7 Order; 11.8 The Structure of Finite Fields; 11.9 Existence of Galois Fields; Exercises 327 $aNotes 330 $aAlthough devoted to constructions of good codes for error control, secrecy or data compression, the emphasis is on the first direction. Introduces a number of important classes of error-detecting and error-correcting codes as well as their decoding methods. Background material on modern algebra is presented where required. The role of error-correcting codes in modern cryptography is treated as are data compression and other topics related to information theory. The definition-theorem proof style used in mathematics texts is employed through the book but formalism is avoided wherever possible. 606 $aCoding theory 606 $aAlgebra 615 0$aCoding theory. 615 0$aAlgebra. 676 $a003/.54 700 $aAdamek$b Jiri$cing.$055617 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910139339603321 996 $aFoundations of coding$9835089 997 $aUNINA