LEADER 05494nam 2200793 a 450 001 9910139293503321 005 20230802012545.0 010 $a3-527-64401-6 010 $a1-283-41404-X 010 $a9786613414045 010 $a3-527-63168-2 010 $a3-527-63169-0 035 $a(CKB)2560000000079320 035 $a(EBL)834635 035 $a(OCoLC)772845003 035 $a(SSID)ssj0000638668 035 $a(PQKBManifestationID)11380529 035 $a(PQKBTitleCode)TC0000638668 035 $a(PQKBWorkID)10585982 035 $a(PQKB)10356998 035 $a(MiAaPQ)EBC834635 035 $a(MiAaPQ)EBC4044273 035 $a(Au-PeEL)EBL834635 035 $a(CaPaEBR)ebr10526563 035 $a(Au-PeEL)EBL4044273 035 $a(CaPaEBR)ebr11116205 035 $a(CaONFJC)MIL341404 035 $a(EXLCZ)992560000000079320 100 $a20120215d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aEnergy savings /$fedited by Evangelos Tsotsas and Arun S. Mujumdar 205 $a1st ed. 210 $aWeinheim, Germany $cWiley-VCH$d2012 215 $a1 online resource (378 p.) 225 0 $aModern drying technology ;$vv. 4 300 $aDescription based upon print version of record. 311 $a3-527-31559-4 320 $aIncludes bibliographical references and index. 327 $aModern Drying Technology: Energy Savings; Contents; Series Preface; Preface of Volume 4; List of Contributors; Recommended Notation; EFCE Working Party on Drying; Address List; 1 Fundamentals of Energy Analysis of Dryers; 1.1 Introduction; 1.2 Energy in Industrial Drying; 1.3 Fundamentals of Dryer Energy Usage; 1.3.1 Evaporation Load; 1.3.2 Dryer Energy Supply; 1.3.3 Evaluation of Energy Inefficiencies and Losses: Example; 1.3.3.1 Dryer Thermal Inefficiencies; 1.3.3.2 Inefficiencies in the Utility (Heat Supply) System; 1.3.3.3 Other Energy Demands; 1.3.4 Energy Cost and Environmental Impact 327 $a1.3.4.1 Primary Energy Use1.3.4.2 Energy Costs; 1.3.4.3 Carbon Dioxide Emissions and Carbon Footprint; 1.4 Setting Targets for Energy Reduction; 1.4.1 Energy Targets; 1.4.2 Pinch Analysis; 1.4.2.1 Basic Principles; 1.4.2.2 Application of Pinch Analysis to Dryers; 1.4.2.3 The Appropriate Placement Principle Applied to Dryers; 1.4.2.4 Pinch Analysis and Utility Systems; 1.4.3 Drying in the Context of the Overall Process; 1.5 Classification of Energy Reduction Methods; 1.5.1 Reducing the Heater Duty of a Convective Dryer; 1.5.2 Direct Reduction of Dryer Heat Duty 327 $a1.5.2.1 Reducing the Inherent Heat Requirement for Drying1.5.2.2 Altering Operating Conditions to Improve Dryer Efficiency; 1.5.3 Heat Recovery and Heat Exchange; 1.5.3.1 Heat Exchange Within the Dryer; 1.5.3.2 Heat Exchange with Other Processes; 1.5.4 Alternative Utility Supply Systems; 1.5.4.1 Low Cost utilities; 1.5.4.2 Improving Energy Supply System Efficiency; 1.5.4.3 Combined Heat and Power; 1.5.4.4 Heat Pumps; 1.6 Case Study; 1.6.1 Process Description and Dryer Options; 1.6.2 Analysis of Dryer Energy Consumption; 1.6.3 Utility Systems and CHP; 1.7 Conclusions; References 327 $a2 Mechanical Solid-Liquid Separation Processes and Techniques2.1 Introduction and Overview; 2.2 Density Separation Processes; 2.2.1 Froth Flotation; 2.2.2 Sedimentation; 2.3 Filtration; 2.3.1 Cake Filtration; 2.3.2 Sieving and Blocking Filtration; 2.3.3 Crossflow Micro- and Ultra-Filtration; 2.3.4 Depth and Precoat Filtration; 2.4 Enhancement of Separation Processes by Additional Electric or Magnetic Forces; 2.5 Mechanical/Thermal Hybrid Processes; 2.6 Important Aspects of Efficient Solid-Liquid Separation Processes; 2.6.1 Mode of Apparatus Operation 327 $a2.6.2 Combination of Separation Apparatuses2.6.3 Suspension Pre-Treatment Methods to Improve Separation Conditions; 2.7 Conclusions; References; 3 Energy Considerations in Osmotic Dehydration; 3.1 Scope; 3.2 Introduction; 3.3 Mass Transfer Kinetics; 3.3.1 Pretreatments; 3.3.2 Product; 3.3.3 Osmotic Solution; 3.3.4 Treatment Conditions; 3.4 Modeling of Osmotic Dehydration; 3.5 Osmotic Dehydration - Two Major Issues; 3.5.1 Quality Issues; 3.5.2 Energy Issues; 3.5.2.1 Osmo-Convective Drying; 3.5.2.2 Osmo-Freeze Drying; 3.5.2.3 Osmo-Microwave Drying; 3.5.2.4 Osmotic-Vacuum Drying; 3.6 Conclusions 327 $aReferences 330 $aThis multivolume work covers drying, a key industrial processes that accounts for about 10-percent of total energy consumption in industry. It guides engineers towards achieving energy savings through such approaches as improved apparatus design, optimization, and heat recovery. In so doing, it points the way to success for both researchers and practitioners in mastering this multiphase and multiscale process. 410 0$aModern Drying Technology 606 $aDrying 606 $aDrying agents 606 $aDrying equipment industry$xEnergy conservation 606 $aEnergy conservation 615 0$aDrying. 615 0$aDrying agents. 615 0$aDrying equipment industry$xEnergy conservation. 615 0$aEnergy conservation. 676 $a660.28 676 $a660.28426 701 $aTsotsas$b Evangelos$0907075 701 $aMujumdar$b A. S$015607 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910139293503321 996 $aEnergy savings$92068048 997 $aUNINA