LEADER 04541nam 2200685 a 450 001 9910139245803321 005 20230803023827.0 010 $a1-118-64942-7 010 $a1-118-64944-3 010 $a1-118-64943-5 035 $a(CKB)2560000000103962 035 $a(EBL)1215809 035 $a(OCoLC)851972185 035 $a(SSID)ssj0000972860 035 $a(PQKBManifestationID)11948218 035 $a(PQKBTitleCode)TC0000972860 035 $a(PQKBWorkID)10948061 035 $a(PQKB)10471331 035 $a(MiAaPQ)EBC1215809 035 $a(Au-PeEL)EBL1215809 035 $a(CaPaEBR)ebr10720704 035 $a(CaONFJC)MIL499131 035 $a(EXLCZ)992560000000103962 100 $a20130327d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSet-theoretic fault-tolerant control in multisensor systems$b[electronic resource] /$fFlorin Stoican, Sorin Olaru ; series editor, Francis Castanie? 210 $aLondon $cISTE ;$aHoboken, N.J. $cJohn Wiley and Sons Inc.$d2013 215 $a1 online resource (168 p.) 225 0$aAutomation-control and industrial engineering series 300 $aDescription based upon print version of record. 311 $a1-84821-565-7 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Contents; Preface; Introduction; Chapter 1. State of the Art in Fault-tolerantControl; 1.1. Fault detection and isolation; 1.2. Control reconfiguration; 1.3. Sets in control; 1.3.1. Set generalities; 1.3.2. Set operations; 1.3.3. Dynamic systems and sets; 1.3.4. Other set-theoretic issues; 1.4. Existing set-theoretic methods in FTC; Chapter 2. Fault Detection and Isolation inMultisensor Systems; 2.1. Problem statement; 2.1.1. Multisensor scheme; 2.1.2. Fault scenarios; 2.2. Fault detection and isolation; 2.2.1. Partition of the sensor indices; 2.2.2. Residual sets for FDI 327 $a2.3. Recovery mechanism2.3.1. Necessary and sufficient conditions; 2.3.2. Construction of set SR; 2.3.3. Inclusion time computation; Chapter 3. Residual Generation and ReferenceGovernor Design; 3.1. Residual signals; 3.1.1. Measurement equations residual; 3.1.2. Observer-based residual; 3.1.3. Receding observation window-based residual; 3.2. Reference governor synthesis; Chapter 4. Reconfiguration of the ControlMechanism for Fault-tolerant Control; 4.1. Active FTC with fix gain feedback; 4.1.1. Fix gain feedback synthesis; 4.1.2. Reference governor synthesis; 4.2. Active FTC with MPC control 327 $a4.2.1. A classic MPC design4.2.2. Toward a cooperative view of FTC-MPC; 4.3. Passive FTC control; 4.3.1. Quadratic cost function; 4.3.2. Penalty function using the gauge function of the healthy invariant set; Chapter 5. Related Problems and Applications; 5.1. Set theoretic issues; 5.1.1. Over-approximation methods; 5.1.2. Convergence time issues; 5.1.3. Cyclic invariance for dwell-time systems; 5.2. Illustrative examples; 5.2.1. Fault detection and isolation; 5.2.2. Recovery mechanism; 5.2.3. Feasible reference generation; 5.2.4. Fault-tolerant control results; Conclusions; Bibliography 327 $aIndex 330 $aFault-tolerant control theory is a well-studied topic but the use of the sets in detection, isolation and/or reconfiguration is rather tangential.The authors of this book propose a systematic analysis of the set-theoretic elements and devise approaches which exploit advanced elements within the field. The main idea is to translate fault detection and isolation conditions into those conditions involving sets. Furthermore, these are to be computed efficiently using positive invariance and reachability notions. Constraints imposed by exact fault control are used to define feasible refere 410 0$aAutomation-control and industrial engineering series 606 $aSensor networks 606 $aMultisensor data fusion 606 $aFault tolerance (Engineering) 606 $aFault-tolerant computing 615 0$aSensor networks. 615 0$aMultisensor data fusion. 615 0$aFault tolerance (Engineering) 615 0$aFault-tolerant computing. 700 $aStoican$b Florin$0914074 701 $aOlaru$b Sorin$0914075 701 $aCastanie?$b Francis$0865318 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910139245803321 996 $aSet-theoretic fault-tolerant control in multisensor systems$92047921 997 $aUNINA