LEADER 05183nam 2200661Ia 450 001 9910139194503321 005 20170815155055.0 010 $a3-527-63414-2 010 $a1-283-37049-2 010 $a9786613370495 010 $a3-527-63412-6 010 $a3-527-63413-4 035 $a(CKB)2560000000059892 035 $a(EBL)645019 035 $a(OCoLC)707067583 035 $a(SSID)ssj0000471433 035 $a(PQKBManifestationID)11307628 035 $a(PQKBTitleCode)TC0000471433 035 $a(PQKBWorkID)10427773 035 $a(PQKB)10356189 035 $a(MiAaPQ)EBC645019 035 $a(EXLCZ)992560000000059892 100 $a20100923d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMolecular assembly of biomimetic systems$b[electronic resource] /$fJunbai Li, Qiang He, and Xuehai Yan 210 $aWeinheim $cWiley-VCH Verlag & Co.$d2011 215 $a1 online resource (203 p.) 300 $aDescription based upon print version of record. 311 $a3-527-32542-5 320 $aIncludes bibliographical references and index. 327 $aMolecular Assembly of Biomimetic Systems; Contents; Preface; Introduction; Biomimetic Membranes; Layer-by-Layer Assembly of Biomimetic Microcapsules; FoF1-ATP Synthase-Based Active Biomimetic Systems; Kinesin-Microtubule-Driven Active Biomimetic Systems; Biomimetic Interface; Peptide-Based Biomimetic Materials; 1: Biomimetic Membranes; 1.1 Introduction; 1.2 Lipid Monolayers; 1.2.1 Phospholipid Monolayers at the Air/Water Interface; 1.2.2 Phospholipid Monolayers at the Oil/Water Interface; 1.2.3 Interfacial Behavior of Phospholipid Monolayers; 1.2.4 Protein Layers at the Oil/Water Interface 327 $a1.2.4.1 Kinetics of Protein Adsorption1.2.4.2 Formation of "Skin-Like" Protein Films on a Curved Interface; 1.2.5 Interfacial Behavior of Phospholipid/Protein Composite Layers; 1.2.5.1 Dynamic Adsorption and Mechanism; 1.2.5.2 Assembly of "Skin-Like" Complex Films on a Curved Interface; 1.3 Modeling Membrane Hydrolysis In Vitro; 1.3.1 PLA2; 1.3.2 PLC; 1.3.3 PLD; 1.4 Polyelectrolyte-Supported Lipid Bilayers; 1.4.1 Polyelectrolyte Multilayers on Planar Surfaces; 1.4.2 Polyelectrolyte Multilayers on Curved Surfaces; 1.5 Conclusions and Perspectives; References 327 $a2: Layer-by-Layer Assembly of Biomimetic Microcapsules2.1 Introduction; 2.2 Layer-by-layer Assembly of Polyelectrolyte Multilayer Microcapsules; 2.2.1 General Aspects; 2.2.2 Permeation and Mechanical Properties of LbL Microcapsules; 2.3 Biointerfacing Polyelectrolyte Microcapsules-A Multifunctional Cargo System; 2.3.1 Lipid Bilayer-Modified Polyelectrolyte Microcapsules; 2.3.2 Formation of Asymmetric Lipid Bilayers on the Surface of LbL-Assembled Capsules; 2.3.3 Assembly of Lipid Bilayers on Covalently LbL-Assembled Protein Capsules; 2.4 Application of Biomimetic Microcapsules 327 $a2.4.1 Integrating Specific Biofunctionality for Targeting2.4.2 Adsorption of Antibodies on the Surface of Biomimetic Microcapsules; 2.5 Conclusions and Perspectives; References; 3: FoF1-ATP Synthase-Based Active Biomimetic Systems; 3.1 Introduction; 3.2 FoF1-ATPase-A Rotary Molecular Motor; 3.2.1 Structure of H+FoF1-ATPase; 3.2.2 Direct Observation of the Rotation of Single ATPase Molecules; 3.3 Reconstitution of FoF1-ATPase in Cellular Mimic Structures; 3.3.1 FoF1-ATPase-incorporated Liposome-A Classical Biomembrane Mimic; 3.3.1.1 Bacteriorhodopsin uses Light to Pump Protons 327 $a3.3.1.2 Proton Gradients Produced by Artificial Photosynthetic Reactions3.3.2 ATP Biosynthesis from Biomimetic Microcapsules; 3.3.2.1 Generation of Proton Gradients in Polymer Capsules by the Change of pH Values; 3.3.2.2 Proton Gradients in Protein Capsules Supplied by the Oxidative Hydrolysis of Glucoses; 3.3.2.3 Proton Gradients Generated by GOD Capsules; 3.3.3 Reassembly of FoF1-ATPase in Polymersomes; 3.4 Conclusions and Perspectives; References; 4: Kinesin-Microtubule-Driven Active Biomimetic Systems; 4.1 Introduction; 4.2 Kinesin-Microtubule Active Transport Systems 327 $a4.3 Active Biomimetic Systems Based on the Kinesin-Microtubule Complex 330 $aThis handy reference details state-of-the-art preparation of molecular assemblies of biotechnologically relevant biomimetic systems (artificial proteins, peptides, molecular motors, photosensitive systems) with an emphasis on biomimetic membranes, capsules, and interfaces. Medical applications such as drug release, gene therapy, and tissue engineering as well as biosensing, biocatalysis, and energy storage are highlighted. 606 $aBiomimetics 606 $aBiomimicry 608 $aElectronic books. 615 0$aBiomimetics. 615 0$aBiomimicry. 676 $a610.28 686 $a540$a000$2GyFmDB 700 $aLi$b Junbai$0920421 701 $aHe$b Qiang$f1972-$0920422 701 $aYan$b Xuehai$0920423 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910139194503321 996 $aMolecular assembly of biomimetic systems$92064444 997 $aUNINA