LEADER 02137oam 2200457zu 450 001 9910139114003321 005 20241212215848.0 010 $a9781457719509 010 $a1457719509 010 $a9781457719493 010 $a1457719495 035 $a(CKB)2560000000079976 035 $a(SSID)ssj0000669154 035 $a(PQKBManifestationID)12310507 035 $a(PQKBTitleCode)TC0000669154 035 $a(PQKBWorkID)10708039 035 $a(PQKB)11130392 035 $a(NjHacI)992560000000079976 035 $a(EXLCZ)992560000000079976 100 $a20160829d2011 uy 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$a2011 18th International Conference on High Performance Computing 210 31$a[Place of publication not identified]$cIEEE$d2011 215 $a1 online resource $cillustrations 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9781457719516 311 08$a1457719517 330 $aThe ever-growing amount of data requires highly scalable storage solutions. The most flexible approach is to use storage pools that can be expanded and scaled down by adding or removing storage devices. To make this approach usable, it is necessary to provide a solution to locate data items in such a dynamic environment. This paper presents and evaluates the Random Slicing strategy, which incorporates lessons learned from table-based, rule-based, and pseudo-randomized hashing strategies and is able to provide a simple and efficient strategy that scales up to handle exascale data. Random Slicing keeps a small table with information about previous storage system insert and remove operations, drastically reducing the required amount of randomness while delivering a perfect load distribution. 606 $aHigh performance computing$vCongresses 615 0$aHigh performance computing 676 $a004.3 702 $aIEEE Staff 801 0$bPQKB 906 $aPROCEEDING 912 $a9910139114003321 996 $a2011 18th International Conference on High Performance Computing$92416972 997 $aUNINA