LEADER 05306nam 2200673 a 450 001 9910139025503321 005 20170815104823.0 010 $a1-118-61983-8 010 $a1-299-44929-8 010 $a1-118-62013-5 035 $a(CKB)2550000001018587 035 $a(EBL)1162074 035 $a(OCoLC)836403007 035 $a(SSID)ssj0000856072 035 $a(PQKBManifestationID)11471347 035 $a(PQKBTitleCode)TC0000856072 035 $a(PQKBWorkID)10805100 035 $a(PQKB)11671260 035 $a(MiAaPQ)EBC1162074 035 $a(EXLCZ)992550000001018587 100 $a20100527d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aEnvironmental geomechanics$b[electronic resource] /$fedited by Bernhard Schrefler, Pierre Delage 210 $aLondon $cISTE ;$aHoboken, N.J. $cJohn Wiley$d2010 215 $a1 online resource (534 p.) 225 1 $aISTE 300 $aDescription based upon print version of record. 311 $a1-84821-166-X 320 $aIncludes bibliographical references and index. 327 $aCover; Environmental Geomechanics; Title Page; Copyright Page; Table of Contents; Introduction; Chapter 1. Debris Flows; 1.1. Introduction; 1.2. Typology of torrential flows; 1.2.1. Watershed as a complex physical system; 1.2.2. Types of transport; 1.3. Initiation, motion and effects of debris flows; 1.3.1. Initiation; 1.3.2. Motion; 1.3.3. Deposition and effects; 1.4. Modeling debris flows; 1.4.1. Debris flow classification and rheological behavior; 1.4.2. Rheometry; 1.4.3. Application: sheet flows; 1.4.4. Slow motion; 1.4.5. Fast motion; 1.5. Bibliography; Chapter 2. Snow Avalanches 327 $a2.1. Introduction2.1.1. A physical picture of avalanches; 2.1.2. Avalanche release; 2.1.3. Avalanche motion; 2.2. Modeling avalanches; 2.2.1. Statistical methods; 2.2.2. Fluid-mechanics approach (avalanche-dynamics models); 2.2.3. Simple models; 2.2.4. Intermediate models (depth-averaged models); 2.2.5. Three-dimensional computational models; 2.2.6. Small-scale models; 2.3. Bibliography; Chapter 3. Instability of Soil Masses; 3.1. Introduction; 3.2. Slowly moving slopes; 3.2.1. Principal characteristics; 3.2.2. Determination of the laws of creep in situ; 3.2.3. Modeling of the mass 327 $a3.3. Limit state analysis3.3.1. Mohr-Coulomb criterion; 3.3.2. Infinitely long slope; 3.3.3. Methods of slices; 3.3.4. Finite-elements method; 3.4. Case of non-saturated masses; 3.4.1. Problem; 3.4.2. Types of modeling; 3.4.3. Three-phase modeling; 3.4.4. Applications; 3.5. Conclusion and prospects; 3.6. Bibliography; Chapter 4. Instability of Rock Masses; 4.1. Introduction; 4.2. Cliff stability and toppling; 4.2.1. Sliding; 4.2.2. Toppling; 4.3. Contact-impact; 4.3.1. General remarks; 4.3.2. Impact at the surface of the terrain; 4.4. Flight trajectory; 4.5. Sliding and rolling 327 $a4.5.1. Sliding4.5.2. Rolling; 4.5.3. Rolling with sliding; 4.6. Impact on an embankment (safety embankment); 4.6.1. Poncelet's empirical formula; 4.6.2. Method of elastic shocks; 4.6.3. Dynamic punching; 4.7. Capacity of the protective structures; 4.7.1. Elastoplastic model; 4.7.2. Capacity of the various types of structures; 4.8. Conclusion; 4.9. Bibliography; Chapter 5. Subsidence Phenomena; 5.1. Subsidence caused by water withdrawal; 5.1.1. Introduction; 5.1.2. The mathematical model; 5.1.3. Possible numerical problems 327 $a5.1.4. Case studies: comparison between observed behavior and the predictions of numerical models5.1.5. Second study case: the subsidence of Albano Terme; 5.2. Artificially-induced land uplift; 5.3. Conclusions; 5.4. Bibliography; Chapter 6. Soil Collapse due to Water Infiltration; 6.1. Introduction; 6.2. The loess in Northern France; 6.2.1. The collapse of loess; 6.2.2. Geotechnical characterization of the samples; 6.2.3. Collapse behavior of the loess; 6.2.4. Evaluation of various collapsibility criteria; 6.3. Conclusion; 6.4. Bibliography 327 $aChapter 7. Subsidence Induced by Fossil Fuel Extraction 330 $aThis book covers a range of topics that are of increasing importance in engineering practice: natural hazards, pollution, and environmental protection through good practice. The first half of the book deals with natural risk factors, of both natural and human origin, that should be considered: subsidence, accidental infiltration, soil instability, rockslides and mudslides, debris flow, and degradation of buildings and monuments due to pollution and climactic effects, for example. These problems are highlighted and it is shown that a combination of sophisticated numerical techniques and e 410 0$aISTE 606 $aEnvironmental geotechnology 606 $aSoil pollution 608 $aElectronic books. 615 0$aEnvironmental geotechnology. 615 0$aSoil pollution. 676 $a624.151 676 $a628.5/5 676 $a628.55 700 $aSchrefler$b B. A$021053 701 $aSchrefler$b B. A$021053 701 $aDelage$b Pierre$0555952 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910139025503321 996 $aEnvironmental geomechanics$92003180 997 $aUNINA