LEADER 05744nam 2200757 450 001 9910138966103321 005 20200520144314.0 010 $a3-527-66457-2 010 $a3-527-66459-9 010 $a3-527-66460-2 035 $a(CKB)2550000001180236 035 $a(EBL)1586583 035 $a(SSID)ssj0001155058 035 $a(PQKBManifestationID)11622698 035 $a(PQKBTitleCode)TC0001155058 035 $a(PQKBWorkID)11196802 035 $a(PQKB)11288986 035 $a(OCoLC)868315167 035 $a(MiAaPQ)EBC1586583 035 $a(Au-PeEL)EBL1586583 035 $a(CaPaEBR)ebr10826692 035 $a(CaONFJC)MIL560350 035 $a(OCoLC)867818476 035 $a(PPN)220887861 035 $a(EXLCZ)992550000001180236 100 $a20140123h20142014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aCopper-catalyzed asymmetric synthesis /$fedited by Alexandre Alexakis, Norbert Krause, and Simon Woodward ; Shinya Adachi [and thirty-one others] ; contributors 210 1$aWeinheim an der Bergstrasse, Germany :$cWiley-VCH Verlag GmbH & Co.,$d2014. 210 4$dİ2014 215 $a1 online resource (472 p.) 300 $aDescription based upon print version of record. 311 $a3-527-33204-9 311 $a1-306-29099-6 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aCopper-Catalyzed Asymmetric Synthesis; Contents; List of Contributors; Introduction; Chapter 1 The Primary Organometallic in Copper-Catalyzed Reactions; 1.1 Scope and Introduction; 1.2 Terminal Organometallics Sources Available; 1.3 Coordination Motifs in Asymmetric Copper Chemistry; 1.3.1 Classical Cuprate Structure and Accepted Modes of Reaction; 1.3.1.1 Conjugate Addition; 1.3.1.2 SN2 Allylation Reactions; 1.3.2 Motifs in Copper-Main Group Bimetallics and Substrate Binding; 1.4 Asymmetric Organolithium-Copper Reagents; 1.5 Asymmetric Grignard-Copper Reagents 327 $a1.6 Asymmetric Organozinc-Copper Reagents1.7 Asymmetric Organoboron-Copper Reagents; 1.8 Asymmetric Organoaluminium-Copper Reagents; 1.9 Asymmetric Silane and Stannane Copper-Promoted Reagents; 1.10 Conclusions; References; Chapter 2 Copper-Catalyzed Asymmetric Conjugate Addition; 2.1 Introduction; 2.2 Conjugate Addition; 2.2.1 The Nucleophile; 2.2.2 The Copper Salt; 2.2.3 The Ligand; 2.2.4 Scope of Michael Acceptors; 2.2.4.1 Enones; 2.2.4.2 Enals; 2.2.4.3 Nitroalkenes; 2.2.4.4 ?,?-Unsaturated Amide and Ester Derivatives; 2.2.4.5 Other Michael Acceptors 327 $a2.2.5 Formation of All-Carbon Quaternary Stereocenters2.3 Trapping of Enolates; References; Chapter 3 Copper-Catalyzed Asymmetric Conjugate Addition and Allylic Substitution of Organometallic Reagents to Extended Multiple-Bond Systems; 3.1 Introduction; 3.2 Copper-Catalyzed Asymmetric Conjugate Addition (ACA) to Polyconjugated Michael Acceptors; 3.2.1 Background; 3.2.2 1,6 Selectivity in ACA to Polyconjugated Systems; 3.2.3 1,4 Selectivity in ACA to Polyconjugated Systems; 3.3 Copper-Catalyzed Asymmetric Allylic Substitution on Extended Multiple-Bond Systems; 3.3.1 Background 327 $a3.3.2 Copper-Catalyzed Enantioselective Allylic Substitution on Extended Multiple-Bond Systems3.4 Conclusion; References; Chapter 4 Asymmetric Allylic Alkylation; 4.1 Introduction; 4.2 Nucleophiles in Enantioselective Process Development; 4.2.1 Grignard Nucleophiles; 4.2.2 Diorganozinc Nucleophiles; 4.2.3 Triorganoaluminium Nucleophiles; 4.2.4 Organoboranes Nucleophiles; 4.2.5 Organolithium Nucleophiles; 4.3 Functionalized Substrates; 4.3.1 Trisubstituted Substrates; 4.3.2 Ester Derivatives; 4.3.3 Heterofunctionalized Substrates; 4.3.4 Vinylic Boronates and Silanes 327 $a4.3.5 Substrates Bearing Two Leaving Groups (1,4 or 1,1')4.3.6 Enyne-Type Substrates; 4.4 Desymmetrization of meso-Allylic Substrates; 4.4.1 Polycyclic Hydrazines, Symmetric Allylic Epoxides, Oxabicyclic Alkenes; 4.4.2 Cyclic Allylic Bis(Diethyl phosphates); 4.4.3 Miscellaneous Desymmetrization; 4.5 Kinetic Resolution Processes; 4.5.1 Allylic Epoxides and Aziridines, Oxabicyclic Alkenes, Bicyclic Oxazines; 4.5.2 Stereodivergent Kinetic Resolution on Acyclic Allylic Halides; 4.6 Direct Enantioconvergent Transformation; 4.7 Conclusion and Perspectives; References 327 $aChapter 5 Ring Opening of Epoxides and Related Systems 330 $a Copper-Catalyzed Asymmetric Synthesis reflects the increasing interest among the chemical synthetic community in the area of asymmetric copper-catalyzed reactions, and introduces readers to the latest, most significant developments in the field. The contents are organized according to reaction type and cover mechanistic and spectroscopic aspects as well as applications in the synthesis of natural products. A whole chapter is devoted to understanding how primary organometallics interact with copper to provide selective catalysts for allylic substitution and conjugate addition, b 606 $aAsymmetric synthesis 606 $aCopper catalysts 606 $aOrganocopper compounds 606 $aOrganic compounds$xSynthesis 615 0$aAsymmetric synthesis. 615 0$aCopper catalysts. 615 0$aOrganocopper compounds. 615 0$aOrganic compounds$xSynthesis. 676 $a547.2 701 $aAlexakis$b Alexandre$0939346 701 $aKrause$b Norbert$0891110 701 $aWoodward$b Simon$0939347 701 $aAdachi$b Shinya$0939348 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910138966103321 996 $aCopper-catalyzed asymmetric synthesis$92117373 997 $aUNINA