LEADER 05554nam 2200709 a 450 001 9910138866703321 005 20200520144314.0 010 $a1-118-60162-9 010 $a1-118-60158-0 010 $a1-118-60154-8 010 $a1-299-18757-9 035 $a(CKB)2550000001005892 035 $a(EBL)1124660 035 $a(OCoLC)828298942 035 $a(SSID)ssj0000832010 035 $a(PQKBManifestationID)11442618 035 $a(PQKBTitleCode)TC0000832010 035 $a(PQKBWorkID)10881262 035 $a(PQKB)10563380 035 $a(OCoLC)842860161 035 $a(MiAaPQ)EBC1124660 035 $a(Au-PeEL)EBL1124660 035 $a(CaPaEBR)ebr10660556 035 $a(CaONFJC)MIL450007 035 $a(PPN)228549086 035 $a(EXLCZ)992550000001005892 100 $a20110607d2011 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aStatistical approach in wall turbulence$b[electronic resource] /$fSedat Tardu 210 $aLondon $cISTE ;$aHoboken, N.J. $cJohn Wiley$d2011 215 $a1 online resource (326 p.) 225 1 $aISTE 300 $aDescription based upon print version of record. 311 $a1-84821-262-3 320 $aIncludes bibliographical references and index. 327 $aCover; Statistical Approach to Wall Turbulence; Title Page; Copyright Page; Table of Contents; Foreword; Introduction; Chapter 1. Basic Concepts; 1.1. Introduction; 1.2. Fundamental equations; 1.2.1. Euler equations; 1.3. Notation; 1.4. Reynolds averaged Navier-Stokes equations; 1.5. Basic concepts of turbulent transport mechanisms; 1.5.1. Turbulent energy transport; 1.5.2. Inter-component transport; 1.6. Correlation tensor dynamics; 1.7. Homogeneous turbulence; 1.8. Isotropic homogeneous turbulence; 1.9. Axisymmetric homogeneous turbulence; 1.10. Turbulence scales; 1.11. Taylor hypothesis 327 $a1.12. Approaches to modeling wall turbulence 1.12.1. Direct numerical simulations; 1.12.2. Measurements; Chapter 2. Preliminary Concepts: Phenomenology, Closures and Fine Structure; 2.1. Introduction; 2.2. Hydrodynamic stability and origins of wall turbulence; 2.2.1. Linear stability; 2.2.2. Secondary stability, non-linearity and bypass transition; 2.3. Reynolds equations in internal turbulent flows; 2.4. Scales in turbulent wall flow; 2.5. Eddy viscosity closures; 2.6. Exact equations for fully developed channel flow; 2.6.1. Shear stress field; 2.6.2. Friction coefficient 327 $a2.6.3. "Laminar/turbulent" decomposition 2.7. Algebraic closures for the mixing length in internal flows; 2.8. Some illustrations using direct numerical simulations at low Reynolds numbers; 2.8.1. Turbulent intensities; 2.8.2. Fine structure; 2.8.3. Transport of turbulent kinetic energy and reformulation of the logarithmic sublayer; 2.8.4. Transport of the Reynolds shear stress -uv; 2.9. Transition to turbulence in a boundary layer on a flat plate; 2.10. Equations for the turbulent boundary layer; 2.11. Mean vorticity; 2.12. Integral equations; 2.13. Scales in a turbulent boundary layer 327 $a2.14. Power law distributions and simplified integral approach 2.15. Outer layer; 2.16. Izakson-Millikan-von Mises overlap; 2.17. Integral quantities; 2.18. Wake region; 2.19. Drag coefficient in external turbulent flows; 2.20. Asymptotic behavior close to the wall; 2.21. Coherent wall structures - a brief introduction; Chapter 3. Inner and Outer Scales: Spectral Behavior; 3.1. Introduction; 3.2. Townsend-Perry analysis in the fully-developed turbulent sublayer; 3.3. Spectral densities; 3.3.1. Longitudinal fluctuating velocity; 3.3.2. Spanwise fluctuating velocity 327 $a3.3.3. Fluctuating wall-normal velocity 3.3.4. Reynolds shear stress; 3.3.5. Summary: active and passive structures; 3.4. Clues to the Kx -1 behavior, and discussion; 3.5. Spectral density Ew and cospectral density Euv; 3.6. Two-dimensional spectral densities; Chapter 4. Reynolds Number-Based Effects; 4.1. Introduction; 4.2. The von Karman constant and the renormalization group; 4.2.1. Renormalization group (RNG); 4.2.2. The von Karman constant derived from the RNG; 4.3. Complete and incomplete similarity; 4.3.1. General considerations. Power law distributions 327 $a4.3.2. Implications for mixing length 330 $aWall turbulence is encountered in many technological applications as well as in the atmosphere, and a detailed understanding leading to its management would have considerable beneficial consequences in many areas. A lot of inspired work by experimenters, theoreticians, engineers and mathematicians has been accomplished over recent decades on this important topic and Statistical Approach to Wall Turbulence provides an updated and integrated view on the progress made in this area.Wall turbulence is a complex phenomenon that has several industrial applications, such as in aerodynamics, turbo 410 0$aISTE 606 $aFluid-structure interaction$xStatistical methods 606 $aTurbulence$xStatistical methods 606 $aBoundary value problems 615 0$aFluid-structure interaction$xStatistical methods. 615 0$aTurbulence$xStatistical methods. 615 0$aBoundary value problems. 676 $a620.1/064 700 $aTardu$b Sedat$f1959-$0960784 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910138866703321 996 $aStatistical approach in wall turbulence$92178031 997 $aUNINA