LEADER 05464nam 2200697 a 450 001 9910138866503321 005 20210604113642.0 010 $a1-118-60153-X 010 $a1-118-60161-0 010 $a1-118-60152-1 010 $a1-299-18758-7 035 $a(CKB)2550000001005893 035 $a(EBL)1124661 035 $a(OCoLC)828298940 035 $a(SSID)ssj0000831992 035 $a(PQKBManifestationID)11462097 035 $a(PQKBTitleCode)TC0000831992 035 $a(PQKBWorkID)10881313 035 $a(PQKB)10101739 035 $a(OCoLC)828424573 035 $a(MiAaPQ)EBC1124661 035 $a(PPN)19694628X 035 $a(EXLCZ)992550000001005893 100 $a20110715d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aRockfall engineering$b[electronic resource] /$fedited by Ste?phane Lambert, Franc?ois Nicot 210 $aLondon $cISTE ;$aHoboken, N.J. $cWiley$d2011 215 $a1 online resource (461 p.) 225 1 $aISTE 300 $aDescription based upon print version of record. 311 $a1-84821-256-9 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright Page; Table of Contents; Foreword; Introduction; Chapter 1. Geophysical Detection and Characterization of Discontinuities in Rock Slopes; 1.1. Introduction; 1.2. Geophysical parameters and methods; 1.2.1. Introduction; 1.2.2. Seismic velocity; 1.2.3. Electrical resistivity; 1.2.4. Dielectrical permittivity; 1.2.5. Resonance frequency; 1.3. Applications; 1.3.1. Introduction; 1.3.2. Plateau survey: Ravin de l'Aiguille; 1.3.3. Cliff survey: Gorge de la Bourne; 1.3.4. Column survey: Chamousset; 1.4. Conclusions; 1.5. Acknowledgments; 1.6. Bibliography 327 $aChapter 2. Remote Sensing and Monitoring Techniques for the Characterization of Rock Mass Deformation and Change Detection2.1. Introduction; 2.2. Main issues; 2.3. Investigation and monitoring techniques; 2.3.1. Geotechnical instrumentation: crackmeter, extensometer, tiltmeter; 2.3.2. Distancemeter; 2.3.3. Laser scanning; 2.3.4. High resolution imaging and photogrammetry; 2.3.5. Synthetic aperture radar interferometry (InSAR); 2.3.6. Global navigation satellite system (GNSS); 2.4. Examples of applications; 2.4.1. Detection of rock slope instabilities; 2.4.2. Geometry and structure analysis 327 $a2.4.3. Movement detection and characterization2.4.4. Monitoring and real-time warning; 2.5. Perspectives; 2.6. Conclusions; 2.7. Bibliography; Chapter 3. Mechanical Stability Analyses of Fractured Rock Slopes; 3.1. Introduction; 3.2. Experimental study of rock joint behavior; 3.2.1. Description of natural rock joints; 3.2.2. Compression behavior of natural rock joints; 3.2.3. Shear behavior of natural rock joints; 3.2.4. Behavior of natural rock joints under other loading paths; 3.3. Failure computations of rigid blocks; 3.3.1. Geometrical aspects of block failure 327 $a3.3.2. Mechanical aspects of failure computation3.3.3. Examples of deterministic and probabilistic stability analyses; 3.3.4. Conclusion on failure computations; 3.4. Overview of different stress-strain analyses; 3.4.1. Different stress-strain methods; 3.4.2. Continuous approaches with joints; 3.4.3. Discrete methods; 3.4.4. Distinct element modeling; 3.4.5. NSCD method; 3.4.6. Hybrid methods; 3.5. An advanced stress-strain analysis of failure; 3.5.1. Framework of the analysis; 3.5.2. A new rock joint constitutive relation: the INL2 relation; 3.5.3. Stability analysis of INL2 relation 327 $a3.5.4. A stress-strain analysis of a rock slope3.6. Conclusions; 3.7. Bibliography; Chapter 4. Assessment of Constitutive Behaviors in Jointed Rock Masses from a DEM Perspective; 4.1. Introduction; 4.2. Discrete Element Modeling of rock materials; 4.3. Representation of rock discontinuities; 4.3.1. Smooth joint contact; 4.3.2. Synthetic rock joint; 4.3.3. Shear behavior of rough joints; 4.4. Synthetic Rock Mass modeling methodology; 4.4.1. Rock mass structural representation; 4.4.2. Equivalent rock mass model; 4.4.3. Rock mass constitutive behavior; 4.4.4. Anisotropy in rock mass properties 327 $a4.5. Analysis of specific mechanical behaviors: case studies 330 $aRockfall Engineering is an up-to-date, international picture of the state of the art in rockfall engineering.The three basic stages of rockfalls are considered: the triggering stage, the motion stage, and the interaction with a structure stage; along with contributions including structural characterization of cliffs, remote monitoring, stability analysis, boulder propagation, design of protection structures an risk assessment.Academic contributions are illustrated by practical examples, and completed by engineering contributions where practical purposes are thoroughly considered. This 410 0$aISTE 606 $aRockslides$xPrevention 606 $aSoil stabilization 606 $aRock slopes 615 0$aRockslides$xPrevention. 615 0$aSoil stabilization. 615 0$aRock slopes. 676 $a624.1/5132 676 $a624.15132 701 $aLambert$b Ste?phane$f1969-$0970583 701 $aNicot$b Franc?ois$0970584 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910138866503321 996 $aRockfall engineering$92206021 997 $aUNINA