LEADER 05348nam 2200697 a 450 001 9910138866303321 005 20170816123439.0 010 $a1-118-60178-5 010 $a1-118-60173-4 010 $a1-118-60174-2 010 $a1-299-18759-5 035 $a(CKB)2550000001005894 035 $a(EBL)1124662 035 $a(OCoLC)828298938 035 $a(SSID)ssj0000831882 035 $a(PQKBManifestationID)11449152 035 $a(PQKBTitleCode)TC0000831882 035 $a(PQKBWorkID)10881579 035 $a(PQKB)10237885 035 $a(OCoLC)828424591 035 $a(MiAaPQ)EBC1124662 035 $a(CaSebORM)9781118601730 035 $a(EXLCZ)992550000001005894 100 $a20110413d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aControl of synchronous motors$b[electronic resource] /$fedited by Jean-Paul Louis 205 $a1st edition 210 $aLondon $cISTE ;$aHoboken, N.J. $cWiley$d2011 215 $a1 online resource (431 p.) 225 1 $aISTE 300 $aDescription based upon print version of record. 311 $a1-84821-273-9 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright Page; Table of Contents; Introduction; Chapter 1. Synchronous motor controls, Problems and Modeling; 1.1. Introduction; 1.2. Problems on the synchronous motor control; 1.2.1. The synchronous motor control, a vector control; 1.2.2. Direct/inverse model and modeling hypotheses; 1.2.3. Control properties; 1.3. Descriptions and physical modeling of the synchronous motor; 1.3.1. Description of the motor in preparation for its modeling; 1.3.2. Hypotheses on the motor; 1.3.3. Notations; 1.3.4. Main transformation matrices; 1.3.5. Physical model of the synchronous motor 327 $a1.3.6. The two levels voltage inverter1.3.7. Model of the mechanical load; 1.4. Modeling in dynamic regime of the synchronous motor in the natural three-phase a-b-c reference frame; 1.4.1. Model of the machines with non-salient poles and constant excitation; 1.4.2. Exploitation of the model in the a-b-c reference frame in sinusoidal steady state, electromagnetic torque; 1.4.3. Extensions to the case of non-sinusoidal field distribution machines 327 $a1.5. Vector transformations and dynamic models in the a-ß and d-q reference frames (sinusoidal field distribution machines with non-salient and salient poles)1.5.1. Factorized matrix modeling; 1.5.2. Concordia transformation: a-ß reference frame; 1.5.3. Park transformation, application to the synchronous salient pole motor; 1.5.4. Note on the torque coefficients; 1.6. Can we extend the Park transformation to synchronous motors with non-sinusoidal field distributions?; 1.7. Conclusion; 1.8. Appendices; 1.8.1. Numerical values of the parameters; 1.8.2. Nomenclature and notations 327 $a1.8.3. Acknowledgments1.9. Bibliography; Chapter 2. Optimal Supply and Synchronous Motors Torque Control: Designs in the a-b-c Reference Frame; 2.1. Introduction: problems of the controls in a-b-c; 2.2. Model in the a-b-c reference frame: extension of the steady state approach in transient regime; 2.2.1. Case of sinusoidal field distribution machines; 2.2.2. Case of trapezoidal field distribution machines (brushless DC motor); 2.2.3. Note on the electromagnetic torque for non-sinusoidal machines; 2.3. Structures of torque controls designed in the a-b-c reference frame 327 $a2.3.1. Case of the sinusoidal distribution machine2.3.2. Extension to brushless DC motors (case of trapezoidal field distribution machines); 2.4. Performances and criticisms of the control approach in the a-b-c reference frame; 2.4.1. Case of a proportional control; 2.4.2. Case of an integral and proportional (IP) current regulation; 2.4.3. Interpretation in Park components of the IP controller designed in a-b-c; 2.4.4. Advanced controllers: example of the resonant controller; 2.4.5. Interpretation by Park transformation of the regulation by resonant controller 327 $a2.5. Generalization: extension of the supplies to the case of non-sinusoidal distribution machines 330 $aSynchronous motors are indubitably the most effective device to drive industrial production systems and robots with precision and rapidity. Their control law is thus critical for combining at the same time high productivity to reduced energy consummation. As far as possible, the control algorithms must exploit the properties of these actuators. Therefore, this work draws on well adapted models resulting from the Park's transformation, for both the most traditional machines with sinusoidal field distribution and for machines with non-sinusoidal field distribution which are more and more used in 410 0$aISTE 606 $aActuators$xAutomatic control 606 $aSynchronization 608 $aElectronic books. 615 0$aActuators$xAutomatic control. 615 0$aSynchronization. 676 $a621 676 $a629.8 700 $aLouis$b Jean-Paul$0896607 701 $aLouis$b Jean-Paul$f1945-$0865189 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910138866303321 996 $aControl of synchronous motors$92003177 997 $aUNINA