LEADER 05548nam 2200709 a 450 001 9910138858003321 005 20230803020317.0 010 $a1-118-58000-1 010 $a1-118-58012-5 010 $a1-118-58013-3 010 $a1-299-18690-4 035 $a(CKB)2550000001005872 035 $a(EBL)1124028 035 $a(OCoLC)828299032 035 $a(SSID)ssj0000990662 035 $a(PQKBManifestationID)11539567 035 $a(PQKBTitleCode)TC0000990662 035 $a(PQKBWorkID)10987935 035 $a(PQKB)10600685 035 $a(OCoLC)834544285 035 $a(MiAaPQ)EBC3058885 035 $a(MiAaPQ)EBC1124028 035 $a(Au-PeEL)EBL3058885 035 $a(CaPaEBR)ebr10658442 035 $a(CaONFJC)MIL449940 035 $a(OCoLC)860528082 035 $a(EXLCZ)992550000001005872 100 $a20120925d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAnalysis of reliability and quality control$b[electronic resource] /$fAmmar Grous 210 $aLondon $cISTE ;$aHoboken, N.J. $cWiley$d2013 215 $a1 online resource (273 p.) 225 0 $aFracture mechanics ;$v1 225 0 $aMechanical engineering and solid mechanics series 300 $aDescription based upon print version of record. 311 $a1-84821-440-5 320 $aIncludes bibliographical references and index. 327 $aTitle Page; Contents; Preface; Chapter 1. Elements of Analysis of Reliability and Quality Control; 1.1. Introduction; 1.1.1. The importance of true physical acceleration life models (accelerated tests = true acceleration or acceleration); 1.1.2. Expression for linear acceleration relationships; 1.2. Fundamental expression of the calculation of reliability; 1.3. Continuous uniform distribution; 1.3.1. Distribution function of probabilities (density of probability); 1.3.2. Distribution function; 1.4. Discrete uniform distribution (discrete U); 1.5. Triangular distribution 327 $a1.5.1. Discrete triangular distribution version1.5.2. Continuous triangular law version; 1.5.3. Links with uniform distribution; 1.6. Beta distribution; 1.6.1. Function of probability density; 1.6.2. Distribution function of cumulative probability; 1.6.3. Estimation of the parameters (p, q) of the beta distribution; 1.6.4. Distribution associated with beta distribution; 1.7. Normal distribution; 1.7.1. Arithmetic mean; 1.7.2. Reliability; 1.7.3. Stabilization and normalization of variance error; 1.8. Log-normal distribution (Galton); 1.9. The Gumbel distribution 327 $a1.9.1. Random variable according to the Gumbel distribution (CRV, E1 Maximum)1.9.2. Random variable according to the Gumbel distribution (CRV E1 Minimum); 1.10. The Frechet distribution (E2 Max); 1.11. The Weibull distribution (with three parameters); 1.12. The Weibull distribution (with two parameters); 1.12.1. Description and common formulae for the Weibull distribution and its derivatives; 1.12.2. Areas where the extreme value distribution model can be used; 1.12.3. Risk model; 1.12.4. Products of damage; 1.13. The Birnbaum-Saunders distribution 327 $a1.13.1. Derivation and use of the Birnbaum-Saunders model1.14. The Cauchy distribution; 1.14.1. Probability density function; 1.14.2. Risk function; 1.14.3. Cumulative risk function; 1.14.4. Survival function (reliability); 1.14.5. Inverse survival function; 1.15. Rayleigh distribution; 1.16. The Rice distribution (from the Rayleigh distribution); 1.17. The Tukey-lambda distribution; 1.18. Student's (t) distribution; 1.18.1. t-Student's inverse cumulative function law (T); 1.19. Chi-square distribution law (?2); 1.19.1. Probability distribution function of chi-square law (?2) 327 $a1.19.2. Probability distribution function of chi-square law (?2)1.20. Exponential distribution; 1.20.1. Example of applying mechanics to component lifespan; 1.21. Double exponential distribution (Laplace); 1.21.1. Estimation of the parameters; 1.21.2. Probability density function; 1.21.3. Cumulated distribution probability function; 1.22. Bernoulli distribution; 1.23. Binomial distribution; 1.24. Polynomial distribution; 1.25. Geometrical distribution; 1.25.1. Hypergeometric distribution (the Pascal distribution) versus binomial distribution 327 $a1.26. Hypergeometric distribution (the Pascal distribution) 330 $a This first book of a 3-volume set on Fracture Mechanics is mainly centered on the vast range of the laws of statistical distributions encountered in various scientific and technical fields. These laws are indispensable in understanding the probability behavior of components and mechanical structures that are exploited in the other volumes of this series, which are dedicated to reliability and quality control.The author presents not only the laws of distribution of various models but also the tests of adequacy suited to confirm or counter the hypothesis of the law in question, namely t 410 0$aMechanical engineering and solid mechanics series. 606 $aProduction management$xQuality control 606 $aReliability (Engineering) 615 0$aProduction management$xQuality control. 615 0$aReliability (Engineering) 676 $a620.0045 700 $aGrous$b Ammar$0889240 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910138858003321 996 $aAnalysis of reliability and quality control$92282153 997 $aUNINA