LEADER 05379nam 2200673 450 001 9910138852503321 005 20200520144314.0 010 $a1-118-35979-8 010 $a1-118-35978-X 010 $a1-118-35967-4 035 $a(CKB)2550000001151421 035 $a(EBL)1489925 035 $a(OCoLC)861559494 035 $a(SSID)ssj0001040469 035 $a(PQKBManifestationID)11584450 035 $a(PQKBTitleCode)TC0001040469 035 $a(PQKBWorkID)11001746 035 $a(PQKB)10301201 035 $a(OCoLC)873995457 035 $a(MiAaPQ)EBC1489925 035 $a(DLC) 2013028435 035 $a(Au-PeEL)EBL1489925 035 $a(CaPaEBR)ebr10788027 035 $a(PPN)190379960 035 $a(EXLCZ)992550000001151421 100 $a20131107d2014 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aElectromechanical motion systems $edesign and simulation /$fFrederick G.F. Moritz 210 1$aChichester, England :$cWiley,$d2014. 210 4$dİ2014 215 $a1 online resource (310 p.) 300 $aDescription based upon print version of record. 311 $a1-119-99274-5 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aElectromechanical Motion Systems; Contents; Acknowledgements; 1 Introduction; 1.1 Targeted Readership; 1.2 Motion System History; 1.3 Suggested Library for Motion System Design; Reference; 2 Control Theory Overview; 2.1 Classic Differential/Integral Equation Approach; 2.2 LaPlace Transform-the S Domain; 2.3 The Transfer Function; 2.4 Open versus Closed Loop Control; 2.4.1 Transient and Frequency Response; 2.5 Stability; 2.6 Basic Mechanical and Electrical Systems; 2.6.1 Equations and Constants; 2.6.2 Power Test; 2.6.3 Retardation Test; 2.7 Sampled Data Systems/Digital Control; 2.7.1 Sampling 327 $a2.7.2 Quantization 2.7.3 Computational Delay; 2.7.4 System Analysis; References; 3 System Components; 3.1 Motors and Amplifiers; 3.1.1 Review of Motor Theory; 3.1.2 The Brush Motor; 3.1.3 The "H" Drive PWM Amplifier; 3.1.4 The Brushless Motor [2, 3]; 3.1.5 Speed/Torque Curves; 3.1.6 Thermal Effects; 3.1.7 Motor Constant; 3.1.8 Linear Motor [7-10]; 3.1.9 Stepper Motors [12]; 3.1.10 Induction Motors; 3.2 Gearheads; 3.2.1 Spur Gearhead; 3.2.2 Planetary Gearhead; 3.2.3 Hybrid Gearhead; 3.2.4 Worm Gearhead; 3.2.5 Harmonic Gearhead; 3.2.6 Gearhead Sizing - Continuous Operation 327 $a3.2.7 Gearhead Sizing - Intermittent Operation 3.2.8 Axial and Radial Load; 3.2.9 Backlash and Stiffness; 3.2.10 Temperature/Thermal Resistance; 3.2.11 Planetary/Spur Gearhead Comparison; 3.3 Leadscrews and Ballscrews; 3.3.1 Leadscrew Specifications; 3.3.2 Ball Screw Specifications; 3.3.3 Critical Speed; 3.3.4 Column Strength; 3.3.5 Starts, Pitch, Lead; 3.3.6 Encoder Lead; 3.3.7 Accuracy; 3.3.8 Backdrive - Self-Locking; 3.3.9 Assemblies; 3.4 Belt and Pulley; 3.4.1 Belt; 3.4.2 Guidance/Alignment; 3.4.3 Belt and Pulley versus Ball Screw; 3.5 Rack and Pinion; 3.5.1 Design Highlights 327 $a3.5.2 Backlash 3.5.3 Dynamics; 3.6 Clutches and Brakes; 3.6.1 Clutch/Brake Types; 3.6.2 Velocity Rating; 3.6.3 Torque Rating; 3.6.4 Duty Cycle/Temperature Limits; 3.6.5 Timing; 3.6.6 Control; 3.6.7 Brake/System Timing; 3.6.8 Soft Start/Stop; 3.7 Servo Couplings; 3.7.1 Inertia; 3.7.2 Velocity; 3.7.3 Torque; 3.7.4 Compliance; 3.7.5 Misalignment; 3.7.6 Coupling Types; 3.8 Feedback Devices; 3.8.1 Optical Encoders; 3.8.2 Magnetic Encoders; 3.8.3 Capacitive Encoders; 3.8.4 Magnetostrictive/Acoustic Encoders; 3.8.5 Resolvers; 3.8.6 Inductosyn; 3.8.7 Potentiometer; 3.8.8 Tachometers; References 327 $aAdditional Readings 4 System Design; 4.1 Position, Velocity, Acceleration, Jerk, Resolution, Accuracy, Repeatability; 4.1.1 Position; 4.1.2 Velocity; 4.1.3 Acceleration; 4.1.4 Jerk; 4.2 Three Basic Loops - Current/Voltage, Velocity, Position; 4.2.1 Current Voltage Loop; 4.2.2 Velocity Loop; 4.2.3 Position Loop; 4.3 The Velocity Profile; 4.3.1 Preface; 4.3.2 Incremental Motion; 4.3.3 Constant Motion; 4.3.4 Profile Simulation; 4.4 Feed Forward; 4.5 Inertia; 4.5.1 Preface; 4.5.2 Motor Selection; 4.5.3 Reflected Inertia - Gearhead; 4.5.4 Torque versus Optimum Ratio - Gearhead 327 $a4.5.5 Power versus Optimum Ratio - Gearhead 330 $aAn introductory reference covering the devices, simulations and limitations in the control of servo systems Linking theoretical material with real-world applications, this book provides a valuable introduction to motion system design. The book begins with an overview of classic theory, its advantages and limitations, before showing how classic limitations can be overcome with complete system simulation. The ability to efficiently vary system parameters (such as inertia, friction, dead-band, damping), and quickly determine their effect on performance, stability, efficiency 606 $aServomechanisms 606 $aRobotics 615 0$aServomechanisms. 615 0$aRobotics. 676 $a629.8/323 686 $aTEC046000$2bisacsh 700 $aMoritz$b Frederick G. F$0875806 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910138852503321 996 $aElectromechanical motion systems$91955837 997 $aUNINA