LEADER 05274nam 2200649 a 450 001 9910138300703321 005 20230725040548.0 010 $a1-118-55781-6 010 $a1-299-31845-2 010 $a1-118-62267-7 010 $a1-61344-555-5 035 $a(CKB)3230000000019177 035 $a(EBL)1153619 035 $a(OCoLC)831118390 035 $a(SSID)ssj0000614979 035 $a(PQKBManifestationID)11400663 035 $a(PQKBTitleCode)TC0000614979 035 $a(PQKBWorkID)10624093 035 $a(PQKB)10623388 035 $a(MiAaPQ)EBC1153619 035 $a(Au-PeEL)EBL1153619 035 $a(CaPaEBR)ebr10674819 035 $a(EXLCZ)993230000000019177 100 $a20130508d2010 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aMicro, nanosystems, and systems on chips$b[electronic resource]$emodeling, control, and estimation /$fedited by Alina Voda 210 $aLondon $cISTE ;$aHoboken, N.J. $cWiley$dc2010 215 $a1 online resource (330 p.) 225 1 $aISTE 300 $aDescription based upon print version of record. 311 $a1-84821-190-2 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright Page; Table of Contents; Introduction; PART I. MINI AND MICROSYSTEMS; Chapter 1. Modeling and Control of Stick-slip Micropositioning Devices; 1.1. Introduction; 1.2. General description of stick-slip micropositioning devices; 1.2.1. Principle; 1.2.2. Experimental device; 1.3. Model of the sub-step mode; 1.3.1. Assumptions; 1.3.2. Microactuator equation; 1.3.3. The elastoplastic friction model; 1.3.4. The state equation; 1.3.5. The output equation; 1.3.6. Experimental and simulation curves; 1.4. PI control of the sub-step mode; 1.5. Modeling the coarse mode 327 $a1.5.1. The model1.5.2. Experimental results; 1.5.3. Remarks; 1.6. Voltage/frequency (U/f) proportional control of the coarse mode; 1.6.1. Principle scheme of the proposed controller; 1.6.2. Analysis; 1.6.3. Stability analysis; 1.6.4. Experiments; 1.7. Conclusion; 1.8. Bibliography; Chapter 2. Microbeam Dynamic Shaping by Closed-loop Electrostatic Actuation using Modal Control; 2.1. Introduction; 2.2. System description; 2.3. Modal analysis; 2.4. Mode-based control; 2.4.1. PID control; 2.4.2. FSF-LTR control; 2.5. Conclusion; 2.6. Bibliography; PART II. NANOSYSTEMS AND NANOWORLD 327 $aChapter 3. Observer-based Estimation of Weak Forces in a Nanosystem Measurement Device 3.1. Introduction; 3.2. Observer approach in an AFM measurement set-up; 3.2.1. Considered AFM model and force measurement problem; 3.2.2. Proposed observer approach; 3.2.3. Experimental application and validation; 3.3. Extension to back action evasion; 3.3.1. Back action problem and illustration; 3.3.2. Observer-based approach; 3.3.3. Simulation results and comments; 3.4. Conclusion; 3.5. Acknowledgements; 3.6. Bibliography 327 $aChapter 4. Tunnel Current for a Robust, High-bandwidth and Ultraprecise Nanopositioning 4.1. Introduction; 4.2. System description; 4.2.1. Forces between the tip and the beam; 4.3. System modeling; 4.3.1. Cantilever model; 4.3.2. System actuators; 4.3.3. Tunnel current; 4.3.4. System model; 4.3.5. System analysis; 4.4. Problem statement; 4.4.1. Robustness and non-linearities; 4.4.2. Experimental noise; 4.5. Tools to deal with noise; 4.5.1. Kalman filter; 4.5.2. Minimum variance controller; 4.6. Closed-loop requirements; 4.6.1. Sensitivity functions; 4.6.2. Robustness margins 327 $a4.6.3. Templates of the sensibility functions 4.7. Control strategy; 4.7.1. Actuator linearization; 4.7.2. Sensor approximation; 4.7.3. Kalman filtering; 4.7.4. RST1 synthesis; 4.7.5. z reconstruction; 4.7.6. RST2 synthesis; 4.8. Results; 4.8.1. Position control; 4.8.2. Distance d control; 4.8.3. Robustness; 4.9. Conclusion; 4.10. Bibliography; Chapter 5. Controller Design and Analysis for High-performance STM; 5.1. Introduction; 5.2. General description of STM; 5.2.1. STM operation modes; 5.2.2. Principle; 5.3. Control design model; 5.3.1. Linear approximation approach 327 $a5.3.2. Open-loop analysis 330 $aMicro and nanosystems represent a major scientific and technological challenge, with actual and potential applications in almost all fields of the human activity. The aim of the present book is to present how concepts from dynamical control systems (modeling, estimation, observation, identification, feedback control) can be adapted and applied to the development of original very small-scale systems and of their human interfaces. The application fields presented here come from micro and nanorobotics, biochips, near-field microscopy (AFM and STM) and nanosystems networks. Alina Voda has drawn 410 0$aISTE 606 $aMicroelectromechanical systems 606 $aSystems on a chip 615 0$aMicroelectromechanical systems. 615 0$aSystems on a chip. 676 $a621.381 701 $aVoda$b Alina$0916240 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910138300703321 996 $aMicro, nanosystems, and systems on chips$92054066 997 $aUNINA