LEADER 05576nam 2200685Ia 450 001 9910137631003321 005 20230725040430.0 010 $a3-527-63604-8 010 $a1-283-86984-5 010 $a3-527-63605-6 010 $a3-527-63603-X 035 $a(CKB)3190000000022648 035 $a(EBL)822717 035 $a(OCoLC)797919279 035 $a(SSID)ssj0000656262 035 $a(PQKBManifestationID)11371118 035 $a(PQKBTitleCode)TC0000656262 035 $a(PQKBWorkID)10631766 035 $a(PQKB)11721474 035 $a(OCoLC)773723255 035 $a(MiAaPQ)EBC822717 035 $a(Au-PeEL)EBL822717 035 $a(CaPaEBR)ebr10560601 035 $a(CaONFJC)MIL418234 035 $a(EXLCZ)993190000000022648 100 $a20110919d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aGravitational-wave physics and astronomy$b[electronic resource] $ean introduction to theory, experiment and data analysis /$fJolien D.E. Creighton and Warren G. Anderson 210 $aWeinheim, Germany $cWiley-VCH$dc2011 215 $a1 online resource (391 p.) 225 1 $aWiley series in cosmology 300 $aDescription based upon print version of record. 311 $a3-527-40886-X 320 $aIncludes bibliographical references and index. 327 $aGravitational-Wave Physics and Astronomy; Contents; Preface; List of Examples; Introduction; References; 1 Prologue; 1.1 Tides in Newton's Gravity; 1.2 Relativity; 2 A Brief Review of General Relativity; 2.1 Differential Geometry; 2.1.1 Coordinates and Distances; 2.1.2 Vectors; 2.1.3 Connections; 2.1.4 Geodesics; 2.1.5 Curvature; 2.1.6 Geodesic Deviation; 2.1.7 Ricci and Einstein Tensors; 2.2 Slow Motion in Weak Gravitational Fields; 2.3 Stress-Energy Tensor; 2.3.1 Perfect Fluid; 2.3.2 Electromagnetism; 2.4 Einstein's Field Equations; 2.5 Newtonian Limit of General Relativity 327 $a2.5.1 Linearized Gravity2.5.2 Newtonian Limit; 2.5.3 Fast Motion; 2.6 Problems; References; 3 Gravitational Waves; 3.1 Description of Gravitational Waves; 3.1.1 Propagation of Gravitational Waves; 3.2 Physical Properties of Gravitational Waves; 3.2.1 Effects of Gravitational Waves; 3.2.2 Energy Carried by a Gravitational Wave; 3.3 Production of Gravitational Radiation; 3.3.1 Far- and Near-Zone Solutions; 3.3.2 Gravitational Radiation Luminosity; 3.3.3 Radiation Reaction; 3.3.4 Angular Momentum Carried by Gravitational Radiation; 3.4 Demonstration: Rotating Triaxial Ellipsoid 327 $a3.5 Demonstration: Orbiting Binary System3.6 Problems; References; 4 Beyond the Newtonian Limit; 4.1 Post-Newtonian; 4.1.1 System of Point Particles; 4.1.2 Two-Body Post-Newtonian Motion; 4.1.3 Higher-Order Post-Newtonian Waveforms for Binary Inspiral; 4.2 Perturbation about Curved Backgrounds; 4.2.1 Gravitational Waves in Cosmological Spacetimes; 4.2.2 Black Hole Perturbation; 4.3 Numerical Relativity; 4.3.1 The Arnowitt-Deser-Misner (ADM) Formalism; 4.3.2 Coordinate Choice; 4.3.3 Initial Data; 4.3.4 Gravitational-Wave Extraction; 4.3.5 Matter; 4.3.6 Numerical Methods; 4.4 Problems 327 $aReferences5 Sources of Gravitational Radiation; 5.1 Sources of Continuous Gravitational Waves; 5.2 Sources of Gravitational-Wave Bursts; 5.2.1 Coalescing Binaries; 5.2.2 Gravitational Collapse; 5.2.3 Bursts from Cosmic String Cusps; 5.2.4 Other Burst Sources; 5.3 Sources of a Stochastic Gravitational-Wave Background; 5.3.1 Cosmological Backgrounds; 5.3.2 Astrophysical Backgrounds; 5.4 Problems; References; 6 Gravitational-Wave Detectors; 6.1 Ground-Based Laser Interferometer Detectors; 6.1.1 Notes on Optics; 6.1.2 Fabry-Pe?rot Cavity; 6.1.3 Michelson Interferometer; 6.1.4 Power Recycling 327 $a6.1.5 Readout6.1.6 Frequency Response of the Initial LIGO Detector; 6.1.7 Sensor Noise; 6.1.8 Environmental Sources of Noise; 6.1.9 Control System; 6.1.10 Gravitational-Wave Response of an Interferometric Detector; 6.1.11 Second Generation Ground-Based Interferometers (and Beyond); 6.2 Space-Based Detectors; 6.2.1 Spacecraft Tracking; 6.2.2 LISA; 6.2.3 Decihertz Experiments; 6.3 Pulsar Timing Experiments; 6.4 Resonant Mass Detectors; 6.5 Problems; References; 7 Gravitational-Wave Data Analysis; 7.1 Random Processes; 7.1.1 Power Spectrum; 7.1.2 Gaussian Noise; 7.2 Optimal Detection Statistic 327 $a7.2.1 Bayes's Theorem 330 $aThis most up-to-date, one-stop reference combines coverage of both theory and observational techniques, with introductory sections to bring all readers up to the same level. Written by outstanding researchers directly involved with the scientific program of the Laser Interferometer Gravitational-Wave Observatory (LIGO), the book begins with a brief review of general relativity before going on to describe the physics of gravitational waves and the astrophysical sources of gravitational radiation. Further sections cover gravitational wave detectors, data analysis, and the outlook of gravitation 410 0$aWiley series in cosmology. 606 $aAstrophysics 606 $aGravitational waves 615 0$aAstrophysics. 615 0$aGravitational waves. 676 $a521.1 700 $aCreighton$b Jolien D. E$g(Jolien Donald Earl),$f1971-$0894452 701 $aAnderson$b Warren G.$f1963-$0894453 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910137631003321 996 $aGravitational-wave physics and astronomy$91998189 997 $aUNINA