LEADER 01391cam0-22003731i-450- 001 990000158540403321 005 20061031151950.0 010 $a88-7107-040-2 035 $a000015854 035 $aFED01000015854 035 $a(Aleph)000015854FED01 035 $a000015854 100 $a20020821d1999----km-y0itay50------ba 101 1 $aita$ceng 105 $ay-------001yy 200 1 $aISBD(G)$eGeneral International Standard Bibliographic Description$eannotated text$fInternational federation of library associations and institutions$gprepared by the ISBD Review Committee Working Group set up by the IFLA Committee on Cataloguing 205 $aRev. ed. 205 $aed. italiana$fa cura dell'Istituto centrale per il catalogo unico delle biblioteche italiane e per le informazioni bibliografiche 210 $aRoma$cICCU$d1999 215 $a51 p.$d24 cm 610 0 $aDescrizione bibliografica 610 0 $aCatalogazione per autori$aStandardizzazione 610 0 $aDescrizione bibliografica$aStandardizzazione 676 $a025.324 710 02$aInternational Federation of Library Associations and Institutions$0284886 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000158540403321 952 $a13 U 04 50$b12445$fFINBC 952 $aBIBL B 307$b12083$fFARBC 959 $aFINBC 959 $aFARBC 996 $aISBD(G$9121640 997 $aUNINA LEADER 04845nam 22007575 450 001 9910137375403321 005 20200704083721.0 010 $a3-319-17695-1 024 7 $a10.1007/978-3-319-17695-6 035 $a(CKB)3710000000567690 035 $a(SSID)ssj0001585140 035 $a(PQKBManifestationID)16265557 035 $a(PQKBTitleCode)TC0001585140 035 $a(PQKBWorkID)14865635 035 $a(PQKB)10433487 035 $a(DE-He213)978-3-319-17695-6 035 $a(MiAaPQ)EBC6295206 035 $a(MiAaPQ)EBC5587909 035 $a(Au-PeEL)EBL5587909 035 $a(OCoLC)1066195150 035 $a(PPN)190527773 035 $a(EXLCZ)993710000000567690 100 $a20151112d2016 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aGauge Invariance and Weyl-polymer Quantization /$fby Franco Strocchi 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (X, 97 p.) 225 1 $aLecture Notes in Physics,$x0075-8450 ;$v904 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-17694-3 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Heisenberg quantization and Weyl quantization -- Delocalization, gauge invariance and non-regular representations -- Quantum mechanical gauge models -- Non-regular representations in quantum field theory -- Diffeomorphism invariance and Weyl polymer quantization -- A generalization of Stone-von Neumann theorem.-  Bibliography -- Index. 330 $aThe book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable.  The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magnetic translations and the rotations of 2?. Relevant examples are also provided by quantum gauge field theory models, in particular by the temporal gauge of Quantum Electrodynamics, avoiding the conflict between the Gauss law constraint and the Dirac-Heisenberg canonical quantization. The same applies to Quantum Chromodynamics, where the non-regular quantization of the temporal gauge provides a simple solution of the U(1) problem and a simple link between the vacuum structure and the topology of the gauge group. Last but not least, Weyl non-regular quantization is briefly discussed from the perspective of the so-called polymer representations proposed for Loop Quantum Gravity in connection with diffeomorphism invariant vacuum states. 410 0$aLecture Notes in Physics,$x0075-8450 ;$v904 606 $aQuantum theory 606 $aMathematical physics 606 $aQuantum field theory 606 $aString models 606 $aParticles (Nuclear physics) 606 $aQuantum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19080 606 $aMathematical Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/M35000 606 $aQuantum Field Theories, String Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P19048 606 $aElementary Particles, Quantum Field Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P23029 615 0$aQuantum theory. 615 0$aMathematical physics. 615 0$aQuantum field theory. 615 0$aString models. 615 0$aParticles (Nuclear physics) 615 14$aQuantum Physics. 615 24$aMathematical Physics. 615 24$aQuantum Field Theories, String Theory. 615 24$aElementary Particles, Quantum Field Theory. 676 $a530.143 700 $aStrocchi$b Franco$4aut$4http://id.loc.gov/vocabulary/relators/aut$0508801 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910137375403321 996 $aGauge Invariance and Weyl-polymer Quantization$92004331 997 $aUNINA