LEADER 03462nam 2200721 450 001 9910137218303321 005 20230621135811.0 010 $a9782889195138$b(ebook) 035 $a(CKB)3710000000520107 035 $a(SSID)ssj0001683363 035 $a(PQKBManifestationID)16509534 035 $a(PQKBTitleCode)TC0001683363 035 $a(PQKBWorkID)15037911 035 $a(PQKB)10043868 035 $a(WaSeSS)IndRDA00056641 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/54489 035 $a(EXLCZ)993710000000520107 100 $a20160829h20152015 fy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aNeuroanatomy and transgenic technologies /$ftopic editors, Alexander C. Jackson, Chen Liu, Makoto Fukuda, Michael Lazarus and Laurent Gautron 210 $cFrontiers Media SA$d2015 210 31$a[Lausanne, Switzerland] :$cFrontiers Media SA,$d[2015] 210 4$dİ2015 215 $a1 online resource (139 pages)$cillustrations; digital file(s) 225 1 $aFrontiers Research Topics 300 $a"Published in: Frontiers in neuroanatomy" -- front cover. 311 08$aPrint version: 2889195139 320 $aIncludes bibliographical references. 330 $aNeuroanatomists increasingly rely on techniques enabling them to manipulate genes in defined brain cell populations. In particular, engineered transgenes, which encode a variety of fluorescent reporter proteins can be inserted into the genome or delivered into desired brain regions using viral vectors, thereby allowing the labeling of molecularly-defined populations of neurons and/or glial cells. Transgenic technology can also be used to selectively delete genes in targeted neuronal populations or bi-directionally modulate their electrical excitability using optogenetic or chemogenetic techniques. One of the primary advantages of using transgenic reagents is to simplify the identification and tracing of targeted population of brain cells, which can be laborious using traditional techniques in neuroanatomy. In this research topic, we assembled up-to-date reviews and original articles that demonstrate the versatility and power of transgenic tools in advancing our knowledge of the nervous system, with a special emphasis on the application of transgenic technology to neuroanatomical questions. 410 0$aFrontiers research topics. 606 $aNeuroanatomy 606 $aNeuroanatomy$xTechnique 606 $aAnatomy$2HILCC 606 $aHuman Anatomy & Physiology$2HILCC 606 $aHealth & Biological Sciences$2HILCC 610 $agene delivery 610 $amouse models 610 $atracing 610 $atransgenesis 610 $amorphology 610 $aadeno-associated virus 610 $aFluorescent reporters 610 $aneuronal circuits 615 0$aNeuroanatomy. 615 0$aNeuroanatomy$xTechnique. 615 7$aAnatomy 615 7$aHuman Anatomy & Physiology 615 7$aHealth & Biological Sciences 700 $aLaurent Gautron$4auth$01365915 702 $aJackson$b Alexander Cosby 702 $aLiu$b Chen 702 $aFukuda$b Makoto 702 $aGautron$b Laurent 801 0$bPQKB 801 2$bUkMaJRU 906 $aBOOK 912 $a9910137218303321 996 $aNeuroanatomy and transgenic technologies$93388008 997 $aUNINA LEADER 01515nam 2200433I 450 001 9910704472703321 005 20130617113014.0 035 $a(CKB)5470000002440966 035 $a(OCoLC)848846743 035 $a(EXLCZ)995470000002440966 100 $a20130617d2012 ua 0 101 0 $aeng 135 $aurmn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDevelopment of a fluid structures interaction test technique for fabrics /$fGregory G. Zilliac [and five others] 210 1$aMoffett Field, CA :$cNational Aeronautics and Space Administration, Ames Research Center,$d2012. 215 $a1 online resource (46 pages) $cillustrations (some color) 225 1 $aNASA/TM ;$v2012-216052 300 $aTitle from title screen (viewed on June 17, 2013). 300 $a"September 2012." 320 $aIncludes bibliographical references (page 42). 606 $aComputational fluid dynamics$2nasat 606 $aBuckling$2nasat 606 $aStress-strain relationships$2nasat 606 $aDescent$2nasat 615 7$aComputational fluid dynamics. 615 7$aBuckling. 615 7$aStress-strain relationships. 615 7$aDescent. 700 $aZilliac$b Gregory G.$01399833 712 02$aAmes Research Center, 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910704472703321 996 $aDevelopment of a fluid structures interaction test technique for fabrics$93465829 997 $aUNINA