LEADER 02303nam 2200577Ia 450 001 9910777303403321 005 20230828231054.0 010 $a1-281-91963-2 010 $a9786611919634 010 $a981-277-468-8 035 $a(CKB)1000000000412035 035 $a(StDuBDS)AH24684541 035 $a(SSID)ssj0000129958 035 $a(PQKBManifestationID)11134184 035 $a(PQKBTitleCode)TC0000129958 035 $a(PQKBWorkID)10081071 035 $a(PQKB)11559750 035 $a(MiAaPQ)EBC1681535 035 $a(WSP)00005931 035 $a(Au-PeEL)EBL1681535 035 $a(CaPaEBR)ebr10201161 035 $a(CaONFJC)MIL191963 035 $a(OCoLC)879025458 035 $a(EXLCZ)991000000000412035 100 $a20060711d2006 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aContinued fractions$b[electronic resource] /$fDoug Hensley 210 $aHackensack, N.J. $cWorld Scientific$dc2006 215 $a1 online resource (xiii, 245 p. ) $cill 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a981-256-477-2 320 $aIncludes bibliographical references and index. 327 $a# Generalizations of the gcd and the Euclidean Algorithm # Continued Fractions with Small Partial Quotients # Ergodic Theory # Complex Continued Fractions # Multidimensional Diophantine Approximation # Powers of an Algebraic Integer # Marshall Hall's Theorem # Functional-Analytic Techniques # The Generating Function Method # Conformal Iterated Function Systems # Convergence of Continued Fractions 330 $aThis text places emphasis on continued fraction Cantor sets and the Hausdorff dimension, algorithms and analysis of algorithms, and multi-dimensional algorithms for simultaneous diophantine approximation. Various computer-generated graphics are presented, and the underlying algorithms are discussed. 606 $aContinued fractions 606 $aSeries 615 0$aContinued fractions. 615 0$aSeries. 676 $a512.72 700 $aHensley$b Doug$01482418 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910777303403321 996 $aContinued fractions$93700004 997 $aUNINA LEADER 01934nam 22004455 450 001 9910136349803321 005 20230801235704.0 010 $a9782872099191 010 $a2872099190 010 $a9782296495906 010 $a2296495907 035 $a(CKB)3780000000049006 035 $a(MH)014194781-0 035 $a(FR-PaCSA)88842378 035 $a(FRCYB88842378)88842378 035 $a(Perlego)3159000 035 $a(EXLCZ)993780000000049006 100 $a20140513d2012 my b 101 0 $afre 135 $aurun| ||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aANALYSE INFINITESIMALE 210 $aParis 210 $cAcademia 210 $d2012 215 $a1 online resource (190 p.) 300 $aBair, Jacques & Henry, Valerie 330 $aBasé sur les raisonnements infinitésimaux des mathématiciens du 17eme siècle, cet ouvrage se propose de redécouvrir le calcul différentiel suivant une approche très intuitive mais rendue rigoureuse par la théorie de l'analyse non standard publiée pour la première fois en 1961 par A. Robinson. On y découvrira notamment deux outils essentiels de l'analyse infinitésimale : le microscope et le télescope qui permettent d'analyser des courbes d'un point de vue local ou asymptotique respectivement. 606 $aCalcul infinite?simal 606 $aSOCIAL SCIENCE / General$2bisacsh 615 4$aCalcul infinite?simal 615 7$aSOCIAL SCIENCE / General 700 $aBair$b Jacques & Henry, Valerie$0846153 906 $aBOOK 912 $a9910136349803321 996 $aANALYSE INFINITESIMALE$91890069 997 $aUNINA 999 $aThis Record contains information from the Harvard Library Bibliographic Dataset, which is provided by the Harvard Library under its Bibliographic Dataset Use Terms and includes data made available by, among others the Library of Congress