LEADER 06885nam 2200637 450 001 9910136253003321 005 20221206173341.0 010 $a1-5231-2360-5 010 $a1-119-11522-1 024 7 $a10.1002/9781119115243 035 $a(MiAaPQ)EBC4405581 035 $a(CaBNVSL)mat07434878 035 $a(IDAMS)0b00006484fee220 035 $a(IEEE)7434878 035 $a(EXLCZ)993710000000596061 100 $a20160412d2016 uy 101 0 $aeng 135 $aurcn#---||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 00$aHVDC grids $efor offshore and supergrid of the future /$fedited by Dirk van Hertem, Oriol Gomis-Bellmunt, Jun Liang 210 1$aHoboken, New Jersey :$cWiley,$d[2016] 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[2016] 215 $a1 online resource (529 pages) $cillustrations 225 1 $aIEEE press series on power engineering 311 1 $a9781118859155 311 1 $a1-118-85915-4 311 1 $a1-119-11524-8 320 $aIncludes bibliographical references and index. 327 $aHVDC GRIDS; Contents; List of Figures; List of Tables; Contributors; Foreword; Preface; Acknowledgments; Acronyms; PART 1 HVDC Grids in the Energy Vision of the Future; 1 Drivers for the development of HVDC grids; 1.1 Introduction; 1.2 From the vertically integrated industry to fast moving liberalized market; 1.2.1 Brief History of the Transmission System Before Liberalization; 1.3 Drivers for change; 1.3.1 Liberalized Energy Market; 1.3.2 More Renewables in the Energy Mix; 1.4 Investments in the grid; 1.4.1 Why Investments Are Needed in the Transmission System 327 $a1.4.2 Difficulties with New Transmission Lines1.4.3 Available Investments Technologies; 1.4.4 HVDC Technology; 1.5 Towards HVDC grids; 1.5.1 Transmission Technology; 1.5.2 Why Not AC?; 1.5.3 HVDC Grids as a Supergrid; 1.6 Conclusions; References; 2 Energy Scenarios: Projections on Europe's future generation and load; 2.1 Introduction; 2.2 System setting; 2.2.1 Supply; 2.2.2 Demand; 2.2.3 Matching Supply and Demand; 2.2.4 European Energy Policy; 2.3 Scenarios for Europe's energy provision; 2.3.1 The Role of Defining Scenarios; 2.3.2 Supply Side; 2.3.3 Demand Side 327 $a2.3.4 Implications Towards the Grid2.3.5 International Cooperation and Market Perspective; 2.4 Conclusions; References; PART 2 HVDC Technology and Technology for Offshore Grids; 3 HVDC technology overview; 3.1 Introduction; 3.2 LCC-HVDC systems; 3.2.1 Configurations; 3.2.2 Reactive Power Properties of LCC HVDC; 3.3 LCC-HVDC converter station technology; 3.3.1 Converter Station; 3.3.2 Transformers; 3.3.3 Filters and Reactive Compensation; 3.3.4 Other Required Components; 3.4 VSC-HVDC systems; 3.5 VSC-HVDC converter station technology; 3.5.1 Converter Configurations; 3.5.2 Switching Components 327 $a3.5.3 AC Filters3.5.4 Transformers; 3.5.5 AC Phase Reactor and Arm Inductor in a Multilevel Converter; 3.5.6 DC Capacitors; 3.5.7 DC Chopper; 3.5.8 HVDC Switchgear; 3.6 Transmission lines; 3.6.1 HVDC Overhead Lines; 3.6.2 HVDC Cables; 3.7 Conclusions; References; 4 Comparison of HVAC and HVDC technologies; 4.1 INTRODUCTION; 4.2 CURRENT TECHNOLOGY LIMITS; 4.2.1 Onshore Equipment; 4.2.2 Offshore Equipment; 4.2.3 Current Ratings for HVDC Technology; 4.3 TECHNICAL COMPARISON; 4.3.1 Charging Currents-Transmission Distance; 4.3.2 Asynchronous Networks; 4.3.3 Power Flow Control Capability 327 $a4.3.4 Voltage Support4.3.5 Dynamic System Performance; 4.3.6 Stability Limits; 4.3.7 Right-of-Way; 4.3.8 Black Start Capability; 4.3.9 Electromagnetic Fields; 4.3.10 Insulation Requirements; 4.3.11 Reliability; 4.4 ECONOMIC COMPARISON; 4.4.1 Onshore Transmission; 4.4.2 Offshore Transmission; 4.4.3 AC Transmission Losses; 4.4.4 DC Transmission Losses; 4.4.5 Comparison of AC and DC Equipment Losses; 4.5 CONCLUSIONS; References; 5 Wind turbine technologies; 5.1 Introduction; 5.2 Parts of the wind turbine; 5.3 Wind turbine types; 5.3.1 Fixed-Speed Wind Turbines 330 $aPresents the advantages, challenges, and technologies of High Voltage Direct Current (HVDC) Grids This book discusses HVDC grids based on multi-terminal voltage-source converters (VSC), which is suitable for the connection of offshore wind farms and a possible solution for a continent wide overlay grid. HVDC Grids: For Offshore and Supergrid of the Future begins by introducing and analyzing the motivations and energy policy drives for developing offshore grids and the European Supergrid. HVDC transmission technology and offshore equipment are described in the second part of the book. The third part of the book discusses how HVDC grids can be developed and integrated in the existing power system. The fourth part of the book focuses on HVDC grid integration, in studies, for different time domains of electric power systems. The book concludes by discussing developments of advanced control methods and control devices for enabling DC grids. . Presents the technology of the future offshore and HVDC grid. Explains how offshore and HVDC grids can be integrated in the existing power system. Provides the required models to analyse the different time domains of power system studies: from steady-state to electromagnetic transients This book is intended for power system engineers and academics with an interest in HVDC or power systems, and policy makers. The book also provides a solid background for researchers working with VSC-HVDC technologies, power electronic devices, offshore wind farm integration, and DC grid protection. Dirk Van Hertem is an Assistant Professor within ESAT-ELECTA at KU Leuven, Belgium. Dr. Van Hertem has written over 100 scientific papers in international journals and conferences. Oriol Gomis-Bellmunt is an Associate Professor in the Technical University of Catalonia (UPC). He is involved in the CITCEA-UPC research group and the Catalonia Institute for Energy Research (IREC). Jun Liang is a Reader within the School of Engineering at Cardiff University, UK. He's also an Adjunct Professor at Changsha University of Science and Technology and North China Electric Power University. 410 0$aIEEE series on power engineering. 606 $aConvertidors de corrent elèctric$2lemac 606 $aParcs eòlics marins$2lemac 606 $aElectric power systems 606 $aElectrical engineering 615 7$aConvertidors de corrent elèctric 615 7$aParcs eòlics marins 615 0$aElectric power systems. 615 0$aElectrical engineering. 676 $a621.31 702 $aHertem$b Dirk van 702 $aGomis-Bellmunt$b Oriol 702 $aLiang$b Jun 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910136253003321 996 $aHVDC grids$91902568 997 $aUNINA