LEADER 01080nam0 22002653i 450 001 SUN0098490 005 20140707120428.191 010 $a88-13-16351-7$d0.00 100 $a20140707d1988 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aGoverno dell'economia e poteri delle Regioni$fFederico Tortorelli 210 $aPadova$cCedam$d1988 215 $a146 p.$d24 cm. 410 1$1001SUN0027552$12001 $aDipartimento di diritto dell'economia dell'Universitą di Napoli$v5$1210 $aPadova$cCEDAM. 620 $dPadova$3SUNL000007 700 1$aTortorelli$b, Federico$3SUNV046121$05804 712 $aCEDAM$3SUNV005537$4650 801 $aIT$bSOL$c20181109$gRICA 912 $aSUN0098490 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI ECONOMIA$d03 PREST IVFa13 $e03 31793 995 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI ECONOMIA$bIT-CE0106$h31793$kPREST IVFa13$op$qa 996 $aGoverno dell'economia e poteri delle Regioni$9577591 997 $aUNICAMPANIA LEADER 02945nam 2200565 450 001 9910480676103321 005 20170918214521.0 010 $a1-4704-0800-7 035 $a(CKB)3360000000464564 035 $a(EBL)3113859 035 $a(SSID)ssj0000888819 035 $a(PQKBManifestationID)11530342 035 $a(PQKBTitleCode)TC0000888819 035 $a(PQKBWorkID)10865491 035 $a(PQKB)11743779 035 $a(MiAaPQ)EBC3113859 035 $a(PPN)19541263X 035 $a(EXLCZ)993360000000464564 100 $a20140904h19881988 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCharacterizing k-dimensional universal Menger compacta /$fMladen Bestvina 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1988. 210 4$d©1988 215 $a1 online resource (121 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 71, Number 380 300 $a"January 1988, volume 71, number 380 (second of 5 numbers)." 311 $a0-8218-2443-0 320 $aIncludes bibliographical references. 327 $a""TABLE OF CONTENTS""; ""INTRODUCTION""; ""DEFINITIONS AND NOTATION""; ""1. PARTITIONS""; ""1.1. Partitions on Compact PL-Manifolds (With Boundary)""; ""1.2. The Standard Construction of the Universal k-Dimensional Menger Space I??[sup(k)] and I??[sup(k)]-Manifolds""; ""1.3. A Combinatorial Characterization of I??[sup(k)]""; ""2. BASIC MOVES""; ""2.1. On LC[sup(k-1)]-Spaces and UV[sup(k-1)]-Maps""; ""2.2. The Isotopy Move and Verification of Axiom 1""; ""2.3. Absorbing Maps and Basic Properties of I??[sup(k)]-Manifolds""; ""2.4. Building Partitions and Associated Maps"" 327 $a""2.5. Connecting Intersections""""2.6. Correct Ordering""; ""2.7. Increasing the Connectivity of Partition Elements""; ""2.8 Some Easy Consequences""; ""3. THE Z-SET UNKNOTTING THEOREM""; ""3.1. The Z-set Unknotting Theorem""; ""3.2. Homogeneity of I??[sup(k)]""; ""4. THE DECOMPOSITION THEORY OF MENGER MANIFOLDS""; ""4.1. The Z-set Shrinking Theorem""; ""4.2. The I??-Z-set Shrinking Theorem""; ""4.3. The Main Shrinking Theorem""; ""5. THE CHARACTERIZATION THEOREM""; ""5.1. The Resolution Theorem""; ""5.2. The Characterization Theorem""; ""6. NONCOMPACT MENGER MANIFOLDS""; ""APPENDIX"" 327 $a""LIST OF REFERENCES"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 71, Number 380. 606 $aMetric spaces 606 $aManifolds (Mathematics) 608 $aElectronic books. 615 0$aMetric spaces. 615 0$aManifolds (Mathematics) 676 $a514/.3 700 $aBestvina$b Mladen$f1959-$0988026 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480676103321 996 $aCharacterizing k-dimensional universal Menger compacta$92259210 997 $aUNINA LEADER 04894nam 2200685 450 001 9910135024803321 005 20231212112436.0 010 $a1-119-26449-9 010 $a1-119-26453-7 010 $a1-119-26450-2 035 $a(CKB)4330000000009785 035 $a(EBL)4631561 035 $a(PQKBManifestationID)16430712 035 $a(PQKBWorkID)14980895 035 $a(PQKB)21849062 035 $a(MiAaPQ)EBC4631561 035 $a(DLC) 2016020693 035 $a(Au-PeEL)EBL4631561 035 $a(CaPaEBR)ebr11246382 035 $a(CaONFJC)MIL949136 035 $a(OCoLC)956649483 035 $a(PPN)242894151 035 $a(EXLCZ)994330000000009785 100 $a20160825h20162016 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRobust correlation $etheory and applications /$fGeorgy L. Shevlyakov, Hannu Oja 210 1$aChichester, England :$cWiley,$d2016. 210 4$d©2016 215 $a1 online resource (353 p.) 225 1 $aWiley Series in Probability and Statistics 225 1 $aTHEi Wiley ebooks 300 $aDescription based upon print version of record. 311 $a1-118-49345-1 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aCover; Title Page; Copyright; Dedication; Contents; Preface; Acknowledgements; About the Companion Website; Chapter 1 Introduction; 1.1 Historical Remarks; 1.2 Ontological Remarks; 1.2.1 Forms of data representation; 1.2.2 Types of data statistics; 1.2.3 Principal aims of statistical data analysis; 1.2.4 Prior information about data distributions and related approaches to statistical data analysis; References; Chapter 2 Classical Measures of Correlation; 2.1 Preliminaries; 2.2 Pearson's Correlation Coefficient: Definitions and Interpretations; 2.2.1 Introductory remarks 327 $a2.2.2 Correlation via regression2.2.3 Correlation via the coefficient of determination; 2.2.4 Correlation via the variances of the principal components; 2.2.5 Correlation via the cosine of the angle between the variable vectors; 2.2.6 Correlation via the ratio of two means; 2.2.7 Pearson's correlation coefficient between random events; 2.3 Nonparametric Measures of Correlation; 2.3.1 Introductory remarks; 2.3.2 The quadrant correlation coefficient; 2.3.3 The Spearman rank correlation coefficient; 2.3.4 The Kendall -rank correlation coefficient; 2.3.5 Concluding remark 327 $a2.4 Informational Measures of Correlation2.5 Summary; References; Chapter 3 Robust Estimation of Location; 3.1 Preliminaries; 3.2 Huber's Minimax Approach; 3.2.1 Introductory remarks; 3.2.2 Minimax variance M-estimates of location; 3.2.3 Minimax bias M-estimates of location; 3.2.4 L-estimates of location; 3.2.5 R-estimates of location; 3.2.6 The relations between M-, L- and R-estimates of location; 3.2.7 Concluding remarks; 3.3 Hampel's Approach Based on Influence Functions; 3.3.1 Introductory remarks; 3.3.2 Sensitivity curve; 3.3.3 Influence function and its properties 327 $a3.3.4 Local measures of robustness3.3.5 B- and V-robustness; 3.3.6 Global measure of robustness: the breakdown point; 3.3.7 Redescending M-estimates; 3.3.8 Concluding remark; 3.4 Robust Estimation of Location: A Sequel; 3.4.1 Introductory remarks; 3.4.2 Huber's minimax variance approach in distribution density models of a non-neighborhood nature; 3.4.3 Robust estimation of location in distribution models with a bounded variance; 3.4.4 On the robustness of robust solutions: stability of least informative distributions; 3.4.5 Concluding remark; 3.5 Stable Estimation; 3.5.1 Introductory remarks 327 $a3.5.2 Variance sensitivity3.5.3 Estimation stability; 3.5.4 Robustness of stable estimates; 3.5.5 Maximin stable redescending M-estimates; 3.5.6 Concluding remarks; 3.6 Robustness Versus Gaussianity; 3.6.1 Introductory remarks; 3.6.2 Derivations of the Gaussian distribution; 3.6.3 Properties of the Gaussian distribution; 3.6.4 Huber's minimax approach and Gaussianity; 3.6.5 Concluding remarks; 3.7 Summary; References; Chapter 4 Robust Estimation of Scale; 4.1 Preliminaries; 4.1.1 Introductory remarks; 4.1.2 Estimation of scale in data analysis; 4.1.3 Measures of scale defined by functionals 327 $a4.2 M- and L-Estimates of Scale 410 0$aWiley series in probability and statistics. 410 0$aTHEi Wiley ebooks. 606 $aCorrelation (Statistics) 606 $aMathematical statistics 615 0$aCorrelation (Statistics) 615 0$aMathematical statistics. 676 $a519.5/37 700 $aShevlyakov$b Georgy L.$0888694 702 $aOja$b Hannu 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910135024803321 996 $aRobust correlation$91985215 997 $aUNINA