LEADER 10564nam 2200721 450 001 9910135020103321 005 20231110213229.0 010 $a1-119-12548-0 010 $a1-5231-1488-6 010 $a1-119-12547-2 010 $a1-119-12549-9 024 7 $a10.1002/9781119125495 035 $a(CKB)4330000000008712 035 $a(EBL)4562136 035 $a(SSID)ssj0001691053 035 $a(PQKBManifestationID)16538907 035 $a(PQKBTitleCode)TC0001691053 035 $a(PQKBWorkID)15064501 035 $a(PQKB)25078575 035 $a(MiAaPQ)EBC4562136 035 $a(Au-PeEL)EBL4562136 035 $a(CaPaEBR)ebr11228549 035 $a(CaONFJC)MIL934992 035 $a(OCoLC)952108134 035 $a(CaBNVSL)mat08371510 035 $a(IDAMS)0b00006487da5f37 035 $a(IEEE)8371510 035 $a(EXLCZ)994330000000008712 100 $a20200313d2019 uy 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aBayesian signal processing $eclassical, modern, and particle filtering methods /$fJames V. Candy 205 $aSecond edition. 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons Inc.,$d[2016] 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[2016] 215 $a1 online resource (637 p.) 225 1 $aAdaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control ;$v54 300 $aDescription based upon print version of record. 311 $a1-119-12545-6 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aBayesian Signal Processing -- Contents -- Preface to Second Edition -- References -- Preface to First Edition -- References -- Acknowledgments -- List of Abbreviations -- 1 Introduction -- 1.1 Introduction -- 1.2 Bayesian Signal Processing -- 1.3 Simulation-Based Approach to Bayesian Processing -- 1.3.1 Bayesian Particle Filter -- 1.4 Bayesian Model-Based Signal Processing -- 1.5 Notation and Terminology -- References -- 2 Bayesian Estimation -- 2.1 Introduction -- 2.2 Batch Bayesian Estimation -- 2.3 Batch Maximum Likelihood Estimation -- 2.3.1 Expectation-Maximization Approach to Maximum Likelihood -- 2.3.2 EM for Exponential Family of Distributions -- 2.4 Batch Minimum Variance Estimation -- 2.5 Sequential Bayesian Estimation -- 2.5.1 Joint Posterior Estimation -- 2.5.2 Filtering Posterior Estimation -- 2.5.3 Likelihood Estimation -- 2.6 Summary -- References -- 3 Simulation-Based Bayesian Methods -- 3.1 Introduction -- 3.2 Probability Density Function Estimation -- 3.3 Sampling Theory -- 3.3.1 Uniform Sampling Method -- 3.3.2 Rejection Sampling Method -- 3.4 Monte Carlo Approach -- 3.4.1 Markov Chains -- 3.4.2 Metropolis-Hastings Sampling -- 3.4.3 Random Walk Metropolis-Hastings Sampling -- 3.4.4 Gibbs Sampling -- 3.4.5 Slice Sampling -- 3.5 Importance Sampling -- 3.6 Sequential Importance Sampling -- 3.7 Summary -- References -- 4 State-Space Models for Bayesian Processing -- 4.1 Introduction -- 4.2 Continuous-Time State-Space Models -- 4.3 Sampled-Data State-Space Models -- 4.4 Discrete-Time State-Space Models -- 4.4.1 Discrete Systems Theory -- 4.5 Gauss-Markov State-Space Models -- 4.5.1 Continuous-Time/Sampled-Data Gauss-Markov Models -- 4.5.2 Discrete-Time Gauss-Markov Models -- 4.6 Innovations Model -- 4.7 State-Space Model Structures -- 4.7.1 Time Series Models -- 4.7.2 State-Space and Time Series Equivalence Models. 327 $a4.8 Nonlinear (Approximate) Gauss-Markov State-Space Models -- 4.9 Summary -- References -- 5 Classical Bayesian State-Space Processors -- 5.1 Introduction -- 5.2 Bayesian Approach to the State-Space -- 5.3 Linear Bayesian Processor (Linear Kalman Filter) -- 5.4 Linearized Bayesian Processor (Linearized Kalman Filter) -- 5.5 Extended Bayesian Processor (Extended Kalman Filter) -- 5.6 Iterated-Extended Bayesian Processor (Iterated-Extended Kalman Filter) -- 5.7 Practical Aspects of Classical Bayesian Processors -- 5.8 Case Study: RLC Circuit Problem -- 5.9 Summary -- References -- 6 Modern Bayesian State-Space Processors -- 6.1 Introduction -- 6.2 Sigma-Point (Unscented) Transformations -- 6.2.1 Statistical Linearization -- 6.2.2 Sigma-Point Approach -- 6.2.3 SPT for Gaussian Prior Distributions -- 6.3 Sigma-Point Bayesian Processor (Unscented Kalman Filter) -- 6.3.1 Extensions of the Sigma-Point Processor -- 6.4 Quadrature Bayesian Processors -- 6.5 Gaussian Sum (Mixture) Bayesian Processors -- 6.6 Case Study: 2D-Tracking Problem -- 6.7 Ensemble Bayesian Processors (Ensemble Kalman Filter) -- 6.8 Summary -- References -- 7 Particle-Based Bayesian State-Space Processors -- 7.1 Introduction -- 7.2 Bayesian State-Space Particle Filters -- 7.3 Importance Proposal Distributions -- 7.3.1 Minimum Variance Importance Distribution -- 7.3.2 Transition Prior Importance Distribution -- 7.4 Resampling -- 7.4.1 Multinomial Resampling -- 7.4.2 Systematic Resampling -- 7.4.3 Residual Resampling -- 7.5 State-Space Particle Filtering Techniques -- 7.5.1 Bootstrap Particle Filter -- 7.5.2 Auxiliary Particle Filter -- 7.5.3 Regularized Particle Filter -- 7.5.4 MCMC Particle Filter -- 7.5.5 Linearized Particle Filter -- 7.6 Practical Aspects of Particle Filter Design -- 7.6.1 Sanity Testing -- 7.6.2 Ensemble Estimation -- 7.6.3 Posterior Probability Validation. 327 $a7.6.4 Model Validation Testing -- 7.7 Case Study: Population Growth Problem -- 7.8 Summary -- References -- 8 Joint Bayesian State/Parametric Processors -- 8.1 Introduction -- 8.2 Bayesian Approach to Joint State/Parameter Estimation -- 8.3 Classical/Modern Joint Bayesian State/Parametric Processors -- 8.3.1 Classical Joint Bayesian Processor -- 8.3.2 Modern Joint Bayesian Processor -- 8.4 Particle-Based Joint Bayesian State/Parametric Processors -- 8.4.1 Parametric Models -- 8.4.2 Joint Bayesian State/Parameter Estimation -- 8.5 Case Study: Random Target Tracking Using a Synthetic Aperture Towed Array -- 8.6 Summary -- References -- 9 Discrete Hidden Markov Model Bayesian Processors -- 9.1 Introduction -- 9.2 Hidden Markov Models -- 9.2.1 Discrete-Time Markov Chains -- 9.2.2 Hidden Markov Chains -- 9.3 Properties of the Hidden Markov Model -- 9.4 HMM Observation Probability: Evaluation Problem -- 9.5 State Estimation in HMM: The Viterbi Technique -- 9.5.1 Individual Hidden State Estimation -- 9.5.2 Entire Hidden State Sequence Estimation -- 9.6 Parameter Estimation in HMM: The EM/Baum-Welch Technique -- 9.6.1 Parameter Estimation with State Sequence Known -- 9.6.2 Parameter Estimation with State Sequence Unknown -- 9.7 Case Study: Time-Reversal Decoding -- 9.8 Summary -- References -- 10 Sequential Bayesian Detection -- 10.1 Introduction -- 10.2 Binary Detection Problem -- 10.2.1 Classical Detection -- 10.2.2 Bayesian Detection -- 10.2.3 Composite Binary Detection -- 10.3 Decision Criteria -- 10.3.1 Probability-of-Error Criterion -- 10.3.2 Bayes Risk Criterion -- 10.3.3 Neyman-Pearson Criterion -- 10.3.4 Multiple (Batch) Measurements -- 10.3.5 Multichannel Measurements -- 10.3.6 Multiple Hypotheses -- 10.4 Performance Metrics -- 10.4.1 Receiver Operating Characteristic (ROC) Curves -- 10.5 Sequential Detection -- 10.5.1 Sequential Decision Theory. 327 $a10.6 Model-Based Sequential Detection -- 10.6.1 Linear Gaussian Model-Based Processor -- 10.6.2 Nonlinear Gaussian Model-Based Processor -- 10.6.3 Non-Gaussian Model-Based Processor -- 10.7 Model-Based Change (Anomaly) Detection -- 10.7.1 Model-Based Detection -- 10.7.2 Optimal Innovations Detection -- 10.7.3 Practical Model-Based Change Detection -- 10.8 Case Study: Reentry Vehicle Change Detection -- 10.8.1 Simulation Results -- 10.9 Summary -- References -- 11 Bayesian Processors for Physics-Based Applications -- 11.1 Optimal Position Estimation for the Automatic Alignment -- 11.1.1 Background -- 11.1.2 Stochastic Modeling of Position Measurements -- 11.1.3 Bayesian Position Estimation and Detection -- 11.1.4 Application: Beam Line Data -- 11.1.5 Results: Beam Line (KDP Deviation) Data -- 11.1.6 Results: Anomaly Detection -- 11.2 Sequential Detection of Broadband Ocean Acoustic Sources -- 11.2.1 Background -- 11.2.2 Broadband State-Space Ocean Acoustic Propagators -- 11.2.3 Discrete Normal-Mode State-Space Representation -- 11.2.4 Broadband Bayesian Processor -- 11.2.5 Broadband Particle Filters -- 11.2.6 Broadband Bootstrap Particle Filter -- 11.2.7 Bayesian Performance Metrics -- 11.2.8 Sequential Detection -- 11.2.9 Broadband BSP Design -- 11.2.10 Summary -- 11.3 Bayesian Processing for Biothreats -- 11.3.1 Background -- 11.3.2 Parameter Estimation -- 11.3.3 Bayesian Processor Design -- 11.3.4 Results -- 11.4 Bayesian Processing for the Detection of Radioactive Sources -- 11.4.1 Physics-Based Processing Model -- 11.4.2 Radionuclide Detection -- 11.4.3 Implementation -- 11.4.4 Detection -- 11.4.5 Data -- 11.4.6 Radionuclide Detection -- 11.4.7 Summary -- 11.5 Sequential Threat Detection: An X-ray Physics-Based Approach -- 11.5.1 Physics-Based Models -- 11.5.2 X-ray State-Space Simulation -- 11.5.3 Sequential Threat Detection -- 11.5.4 Summary. 327 $a11.6 Adaptive Processing for Shallow Ocean Applications -- 11.6.1 State-Space Propagator -- 11.6.2 Processors -- 11.6.3 Model-Based Ocean Acoustic Processing -- 11.6.4 Summary -- References -- Appendix: Probability and Statistics Overview -- A.1 Probability Theory -- A.2 Gaussian Random Vectors -- A.3 Uncorrelated Transformation: Gaussian Random Vectors -- References -- Index -- Wiley Series on Adaptive and Cognitive Dynamic Systems -- EULA. 330 8 $aBayesian-based signal processing is expected to dominate the future of model-based signal processing for years to come. This book develops the 'Bayesian approach' to statistical signal processing for a variety of useful model sets with an emphasis on nonlinear/non-Gaussian problems, as well as classical techniques. 410 0$aAdaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control ;$v54. 606 $aSignal processing$xMathematics 606 $aBayesian statistical decision theory 615 0$aSignal processing$xMathematics. 615 0$aBayesian statistical decision theory. 676 $a621.382/201519542 700 $aCandy$b James V.$08471 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910135020103321 996 $aBayesian signal processing$92096180 997 $aUNINA LEADER 02927nam1 2200625 i 450 001 TO01601985 005 20251003044412.0 010 $a9788804562375 100 $a20080118g2007 ||||0itac50 ba 101 | $aita$alat 102 $ait 181 1$6z01$ai $bxxxe 182 1$6z01$an 183 1$6z01$anc$2RDAcarrier 200 1 $aTrattati d'amore cristiani del 12. secolo$fa cura di Francesco Zambon 210 $a[Milano]$cFondazione Lorenzo Valla$cA. Mondadori 215 $a v.$d21 cm. 225 | $aScrittori greci e latini 410 0$1001CFI0026984$12001 $aScrittori greci e latini 463 1$1001CFI0732670$12000 $a2$v2 463 1$1001NAP0430643$12000 $a1$v1 463 1$1001RAV1685578$12000 $a2$v2 463 1$1001TO01601988$12000 $a1$v1 606 $aAmore$xConcezione cristiana$xSec. 12.$xAntologie$2FIR$3CFIC173680$9E 676 $a231$9TEOLOGIA DOTTRINALE CRISTIANA. DIO$v21 676 $a231.6$9TEOLOGIA DOTTRINALE CRISTIANA. AMORE E SAPIENZA DIVINA$v21 676 $a241.677$9TEOLOGIA MORALE CRISTIANA. Amore$v21 676 $a248$9ESPERIENZA, PRATICA, VITA CRISTIANA$v14 676 $a248.2$9ESPERIENZA RELIGIOSA CRISTIANA$v12 676 $a248.22$9ESPERIENZA RELIGIOSA CRISTIANA. MISTICISMO$v19 676 $a248.22$9Esperienza religiosa. Misticismo.$v20 676 $a248.22$9ESPERIENZA RELIGIOSA CRISTIANA. MISTICISMO$v21 676 $a809.93382$9STORIA, DESCRIZIONE, STUDI CRITICI DI PIU DI DUE LETTERATURE SU SPECIFICI TEMI E SOGGETTI. Concetti religiosi$v21 676 $a870.8$9$v21 676 $a878$9Miscellanea latina$v12 696 $aPassi scelti$aFlorilegi$aExcerpta$aBrani scelti 699 $aAntologie$yPassi scelti 699 $aAntologie$yFlorilegi 699 $aAntologie$yExcerpta 699 $aAntologie$zBrani scelti 702 1$aZambon$b, Francesco$f <1949- >$3CFIV011827 801 3$aIT$bIT-000000$c20080118 850 $aIT-BN0095 $aIT-NA0602 $aIT-SA0112 $aIT-AV0175 $aIT-NA0079 $aIT-NA0070 $aIT-NA0120 $aIT-NA0261 $aIT-NA0812 $aIT-AV0045 $aIT-NA0312 $aIT-BN0115 901 $bNAP TE$cV.FONDI $n$ 901 $bNAP MV$cE $nDEPOSITO LIBRARIO RELIGIONE SALA E 901 $bNAP 84$cCOL. VALLA$n$ 901 $bNAP JS$cBIBLIOTECA$n$ 901 $bNAP BN$cS.C. $n$ 901 $bNAP 01$cPOZZO LIB.$nVi sono collocati fondi di economia, periodici di ingegneria e scienze, periodici di economia e statistica e altri fondi comprendenti documenti di economia pervenuti in dono. 901 $bNAP 90$cM $n$ 912 $aTO01601985 950 1$aBiblioteca Centralizzata di Ateneo$cv. 2$d 01POZZO LIB.ECON MON 2704 977 $a 01$a 07$a 84$a 90$a BN$a BU$a CR$a FT$a JS$a MV$a SC$a TE 996 $aTrattati d'amore cristiani del 12. secolo$968426 997 $aUNISANNIO