LEADER 03779nam 22006855 450 001 9910134930703321 005 20200705234934.0 010 $a3-319-20547-1 024 7 $a10.1007/978-3-319-20547-2 035 $a(CKB)4210000000000432 035 $a(SSID)ssj0001585198 035 $a(PQKBManifestationID)16265540 035 $a(PQKBTitleCode)TC0001585198 035 $a(PQKBWorkID)14866511 035 $a(PQKB)10388909 035 $a(DE-He213)978-3-319-20547-2 035 $a(MiAaPQ)EBC6296997 035 $a(MiAaPQ)EBC5587471 035 $a(Au-PeEL)EBL5587471 035 $a(OCoLC)921124129 035 $a(PPN)188569332 035 $a(EXLCZ)994210000000000432 100 $a20150907d2015 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aInfinity Properads and Infinity Wheeled Properads /$fby Philip Hackney, Marcy Robertson, Donald Yau 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (XV, 358 p. 213 illus.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2147 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-20546-3 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Graphs -- Properads -- Symmetric Monoidal Closed Structure on Properads -- Graphical Properads -- Properadic Graphical Category -- Properadic Graphical Sets and Infinity Properads -- Fundamental Properads of Infinity Properads -- Wheeled Properads and Graphical Wheeled Properads -- Infinity Wheeled Properads -- What's Next?. 330 $aThe topic of this book sits at the interface of the theory of higher categories (in the guise of (?,1)-categories) and the theory of properads. Properads are devices more general than operads, and enable one to encode bialgebraic, rather than just (co)algebraic, structures.   The text extends both the Joyal-Lurie approach to higher categories and the Cisinski-Moerdijk-Weiss approach to higher operads, and provides a foundation for a broad study of the homotopy theory of properads. This work also serves as a complete guide to the generalised graphs which are pervasive in the study of operads and properads. A preliminary list of potential applications and extensions comprises the final chapter.   Infinity Properads and Infinity Wheeled Properads is written for mathematicians in the fields of topology, algebra, category theory, and related areas. It is written roughly at the second year graduate level, and assumes a basic knowledge of category theory. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2147 606 $aAlgebraic topology 606 $aCategory theory (Mathematics) 606 $aHomological algebra 606 $aAlgebraic Topology$3https://scigraph.springernature.com/ontologies/product-market-codes/M28019 606 $aCategory Theory, Homological Algebra$3https://scigraph.springernature.com/ontologies/product-market-codes/M11035 615 0$aAlgebraic topology. 615 0$aCategory theory (Mathematics). 615 0$aHomological algebra. 615 14$aAlgebraic Topology. 615 24$aCategory Theory, Homological Algebra. 676 $a512.55 700 $aHackney$b Philip$4aut$4http://id.loc.gov/vocabulary/relators/aut$0716389 702 $aRobertson$b Marcy$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aYau$b Donald$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910134930703321 996 $aInfinity Properads and Infinity Wheeled Properads$92273100 997 $aUNINA