LEADER 03817nam 22007215 450 001 9910134869303321 005 20200701175137.0 010 $a3-319-22704-1 024 7 $a10.1007/978-3-319-22704-7 035 $a(CKB)4340000000001629 035 $a(SSID)ssj0001599564 035 $a(PQKBManifestationID)16305814 035 $a(PQKBTitleCode)TC0001599564 035 $a(PQKBWorkID)14892268 035 $a(PQKB)11281805 035 $a(DE-He213)978-3-319-22704-7 035 $a(MiAaPQ)EBC5592280 035 $a(PPN)19088455X 035 $a(EXLCZ)994340000000001629 100 $a20151224d2015 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aQuantum Lie Theory $eA Multilinear Approach /$fby Vladislav Kharchenko 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (XIII, 302 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2150 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-22703-3 320 $aIncludes bibliographical references and index. 327 $aElements of noncommutative algebra -- PoincarŽe-Birkhoff-Witt basis -- Quantizations of Kac-Moody algebras -- Algebra of skew-primitive elements -- Multilinear operations -- Braided Hopf algebras -- Binary structures -- Algebra of primitive nonassociative polynomials. 330 $aThis is an introduction to the mathematics behind the phrase ?quantum Lie algebra?. The numerous attempts over the last 15-20 years to define a quantum Lie algebra as an elegant algebraic object with a binary ?quantum? Lie bracket have not been widely accepted. In this book, an alternative approach is developed that includes multivariable operations. Among the problems discussed are the following: a PBW-type theorem; quantum deformations of Kac--Moody algebras; generic and symmetric quantum Lie operations; the Nichols algebras; the Gurevich--Manin  Lie algebras;  and Shestakov--Umirbaev  operations for the Lie theory of nonassociative products.  Opening with an introduction for beginners and continuing as a textbook for graduate students in physics and mathematics, the book can also be used as a reference by more advanced readers. With the exception of the introductory chapter, the content of this monograph has not previously appeared in book form. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2150 606 $aAssociative rings 606 $aRings (Algebra) 606 $aNonassociative rings 606 $aGroup theory 606 $aQuantum theory 606 $aAssociative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11027 606 $aNon-associative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11116 606 $aGroup Theory and Generalizations$3https://scigraph.springernature.com/ontologies/product-market-codes/M11078 606 $aQuantum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19080 615 0$aAssociative rings. 615 0$aRings (Algebra) 615 0$aNonassociative rings. 615 0$aGroup theory. 615 0$aQuantum theory. 615 14$aAssociative Rings and Algebras. 615 24$aNon-associative Rings and Algebras. 615 24$aGroup Theory and Generalizations. 615 24$aQuantum Physics. 676 $a512.55 700 $aKharchenko$b Vladislav$4aut$4http://id.loc.gov/vocabulary/relators/aut$0716357 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910134869303321 996 $aQuantum lie theory$91387927 997 $aUNINA