LEADER 02648oas 2201057 a 450 001 9910134068503321 005 20251106213014.0 011 $a1616-7228 035 $a(DE-599)ZDB2063267-8 035 $a(DE-599)2063267-8 035 $a(OCoLC)48193245 035 $a(CONSER) 2001233899 035 $a(CKB)111025029846002 035 $a(EXLCZ)99111025029846002 100 $a20011023a20019999 sy 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aOcean dynamics 210 $aBerlin, Germany $cSpringer 300 $aRefereed/Peer-reviewed 300 $a"Theoretical, computational and observational oceanography"--Journal homepage. 311 08$a1616-7341 606 $aHydrography$vPeriodicals 606 $aOceanography$vPeriodicals 606 $aMarine meteorology$vPeriodicals 606 $aHydrographie$vPe?riodiques 606 $aOce?anographie$vPe?riodiques 606 $aMe?te?orologie maritime$vPe?riodiques 606 $aOceanography$2ebps 606 $aSurveying & Surveyors$2ebps 606 $aHydrography$2fast$3(OCoLC)fst00965102 606 $aMarine meteorology$2fast$3(OCoLC)fst01009724 606 $aOceanography$2fast$3(OCoLC)fst01043671 606 $aOceanografie$2gtt 608 $aPeriodicals.$2fast 608 $aPeriodicals.$2lcgft 615 0$aHydrography 615 0$aOceanography 615 0$aMarine meteorology 615 6$aHydrographie 615 6$aOce?anographie 615 6$aMe?te?orologie maritime 615 7$aOceanography. 615 7$aSurveying & Surveyors. 615 7$aHydrography. 615 7$aMarine meteorology. 615 7$aOceanography. 615 17$aOceanografie. 676 $a526.99 712 02$aSpringer (Firm), 801 0$bABC 801 1$bABC 801 2$bTJC 801 2$bGUA 801 2$bOCLCQ 801 2$bMUQ 801 2$bCGU 801 2$bOCL 801 2$bOCLCQ 801 2$bUKMGB 801 2$bMYG 801 2$bOCLCQ 801 2$bOCLCF 801 2$bVT2 801 2$bOCLCQ 801 2$bGUA 801 2$bW2U 801 2$bAZU 801 2$bFJM 801 2$bOCLCE 801 2$bUAB 801 2$bUKBOL 801 2$bWT2 801 2$bOCLCQ 801 2$bAU@ 801 2$bDLC 801 2$bNJT 801 2$bOCLCQ 801 2$bSRU 801 2$bUBY 801 2$bOCLCO 801 2$bOCLCQ 801 2$bOCLCL 801 2$bOCLCQ 906 $aJOURNAL 912 $a9910134068503321 996 $aOcean dynamics$91212016 997 $aUNINA LEADER 13748nam 22008535 450 001 9910502999603321 005 20251225174948.0 010 $a3-030-86486-3 024 7 $a10.1007/978-3-030-86486-6 035 $a(CKB)4100000012025747 035 $a(MiAaPQ)EBC6724644 035 $a(Au-PeEL)EBL6724644 035 $a(OCoLC)1268266664 035 $a(PPN)25805137X 035 $a(BIP)81558139 035 $a(BIP)81150515 035 $a(DE-He213)978-3-030-86486-6 035 $a(EXLCZ)994100000012025747 100 $a20210909d2021 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMachine Learning and Knowledge Discovery in Databases. Research Track $eEuropean Conference, ECML PKDD 2021, Bilbao, Spain, September 13?17, 2021, Proceedings, Part I /$fedited by Nuria Oliver, Fernando Pérez-Cruz, Stefan Kramer, Jesse Read, Jose A. Lozano 205 $a1st ed. 2021. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2021. 215 $a1 online resource (838 pages) 225 1 $aLecture Notes in Artificial Intelligence,$x2945-9141 ;$v12975 311 08$a3-030-86485-5 320 $aIncludes bibliographical references and index. 327 $aIntro -- Preface -- Organization -- Invited Talks Abstracts -- WuDao: Pretrain the World -- The Value of Data for Personalization -- AI Fairness in Practice -- Safety and Robustness for Deep Learning with Provable Guarantees -- Contents - Part I -- Online Learning -- Routine Bandits: Minimizing Regret on Recurring Problems -- 1 Introduction -- 2 The Routine Bandit Setting -- 3 The KLUCB-RB Strategy -- 4 Sketch of Proof -- 5 Numerical Experiments -- 5.1 More Arms Than Bandits: A Beneficial Case -- 5.2 Increasing the Number of Bandit Instances -- 5.3 Critical Settings -- 6 Conclusion -- References -- Conservative Online Convex Optimization -- 1 Introduction -- 2 Background -- 3 Problem Formulation -- 4 The Conservative Projection Algorithm -- 4.1 The Conservative Ball -- 4.2 Description of the CP Algorithm -- 4.3 Analysis of the CP Algorithm -- 5 Experiments -- 5.1 Synthetic Regression Dataset -- 5.2 Online Classification: The IMDB Dataset -- 5.3 Online Classification: The SpamBase Dataset -- 6 Conclusions -- References -- Knowledge Infused Policy Gradients with Upper Confidence Bound for Relational Bandits -- 1 Introduction -- 2 Problem Setting -- 3 Knowledge Infused Policy Gradients -- 4 Formulation of Knowledge Infusion -- 5 Regret Bound for KIPG -- 6 KIPG-Upper Confidence Bound -- 7 Experiments -- 7.1 Simulated Domains -- 7.2 Real-World Datasets -- 8 Conclusion and Future Work -- References -- Exploiting History Data for Nonstationary Multi-armed Bandit -- 1 Introduction -- 2 Related Works -- 3 Problem Formulation -- 4 The BR-MAB Algorithm -- 4.1 Break-Point Prediction Procedure -- 4.2 Recurrent Concepts Equivalence Test -- 4.3 Regret Analysis for Generic CD-MABs -- 4.4 Regret Analysis for the Break-Point Prediction Procedure -- 5 Experiments -- 5.1 Toy Example -- 5.2 Synthetic Setting -- 5.3 Yahoo! Setting -- 6 Conclusion and Future Works. 327 $aReferences -- High-Probability Kernel Alignment Regret Bounds for Online Kernel Selection -- 1 Introduction -- 1.1 Related Work -- 2 Problem Setting -- 3 A Nearly Optimal High-Probability Regret Bound -- 3.1 Warm-Up -- 3.2 A More Efficient Algorithm -- 3.3 Regret Bound -- 3.4 Time Complexity Analysis -- 4 Regret-Performance Trade-Off -- 4.1 Regret Bound -- 4.2 Budgeted EA2OKS -- 5 Experiments -- 5.1 Experimental Setting -- 5.2 Experimental Results -- 6 Conclusion -- References -- Reinforcement Learning -- Periodic Intra-ensemble Knowledge Distillation for Reinforcement Learning -- 1 Introduction -- 2 Related Work -- 3 Background -- 4 Method -- 4.1 Overview -- 4.2 Ensemble Initialization -- 4.3 Joint Training -- 4.4 Intra-ensemble Knowledge Distillation -- 5 Experiments -- 5.1 Experimental Setup -- 5.2 Effectiveness of PIEKD -- 5.3 Effectiveness of Knowledge Distillation for Knowledge Sharing -- 5.4 Effectiveness of Selecting the Best-Performing Agent as the Teacher -- 5.5 Ablation Study on Ensemble Size -- 5.6 Ablation Study on Distillation Interval -- 6 Conclusion -- References -- Learning to Build High-Fidelity and Robust Environment Models -- 1 Introduction -- 2 Related Work -- 2.1 Simulator Building -- 2.2 Model-Based Reinforcement Learning -- 2.3 Offline Policy Evaluation -- 2.4 Robust Reinforcement Learning -- 3 Preliminaries -- 3.1 Markov Decision Process -- 3.2 Dual Markov Decision Process -- 3.3 Imitation Learning -- 4 Robust Learning to Simulate -- 4.1 Problem Definition -- 4.2 Single Behavior Policy Setting -- 4.3 Robust Policy Setting -- 5 Experiments -- 5.1 Experimental Protocol -- 5.2 Studied Environments and Baselines -- 5.3 Performance on Policy Value Difference Evaluation -- 5.4 Performance on Policy Ranking -- 5.5 Performance on Policy Improvement -- 5.6 Analysis on Hyperparameter -- 6 Conclusion -- References. 327 $aEnsemble and Auxiliary Tasks for Data-Efficient Deep Reinforcement Learning -- 1 Introduction -- 2 Related Works -- 3 Background -- 3.1 Markov Decision Process and RL -- 3.2 Rainbow Agent -- 4 Rainbow Ensemble -- 5 Auxiliary Tasks for Ensemble RL -- 5.1 Network Architecture -- 5.2 Model Learning as Auxiliary Tasks -- 5.3 Object and Event Based Auxiliary Tasks -- 6 Theoretical Analysis -- 7 Experiments -- 7.1 Comparison to Prior Works -- 7.2 Bias-Variance-Covariance Measurements -- 7.3 On Independent Training of Ensemble -- 7.4 The Importance of Auxiliary Tasks -- 7.5 On Distributing the Auxiliary Tasks -- 8 Conclusions -- References -- Multi-agent Imitation Learning with Copulas -- 1 Introduction -- 2 Preliminaries -- 3 Modeling Multi-agent Interaction with Copulas -- 3.1 Copulas -- 3.2 Multi-agent Imitation Learning with Copulas -- 4 Related Work -- 5 Experiments -- 5.1 Experimental Setup -- 5.2 Results -- 5.3 Generalization of Copula -- 5.4 Copula Visualization -- 5.5 Trajectory Generation -- 6 Conclusion and Future Work -- A Dataset Details -- B Implementation Details -- References -- CMIX: Deep Multi-agent Reinforcement Learning with Peak and Average Constraints -- 1 Introduction -- 2 Background -- 2.1 QMIX -- 2.2 Constrained Reinforcement Learning -- 3 Problem Formulation -- 4 CMIX -- 4.1 Multi-objective Constrained Problem -- 4.2 CMIX Architecture -- 4.3 Gap Loss Function -- 4.4 CMIX Algorithm -- 5 Experiments -- 5.1 Blocker Game with Travel Cost -- 5.2 Vehicular Network Routing Optimization -- 5.3 Gap Loss Coefficient -- 6 Related Work -- 7 Conclusion -- References -- Model-Based Offline Policy Optimization with Distribution Correcting Regularization -- 1 Introduction -- 2 Preliminary -- 2.1 Markov Decision Processes -- 2.2 Offline RL -- 2.3 Model-Based RL -- 3 A Lower Bound of the True Expected Return -- 4 Method -- 4.1 Overall Framework. 327 $a4.2 Ratio Estimation via DICE -- 5 Experiment -- 5.1 Comparative Evaluation -- 5.2 Empirical Analysis -- 6 Related Work -- 6.1 Model-Free Offline RL -- 6.2 Model-Based Offline RL -- 7 Conclusion -- References -- Disagreement Options: Task Adaptation Through Temporally Extended Actions -- 1 Introduction -- 2 Preliminaries -- 3 Disagreement Options -- 3.1 Task Similarity: How to Select Relevant Priors? -- 3.2 Task Adaptation: How Should We Use the Prior Knowledge? -- 3.3 Prior Policy Acquisition -- 4 Experiments -- 4.1 3D MiniWorld -- 4.2 Photorealistic Simulator -- 5 Towards Real-World Task Adaptation -- 6 Related Work -- 7 Discussion -- 8 Conclusion -- References -- Deep Adaptive Multi-intention Inverse Reinforcement Learning -- 1 Introduction -- 2 Related Works -- 3 Problem Definition -- 4 Approach -- 4.1 First Solution with Stochastic Expectation Maximization -- 4.2 Second Solution with Monte Carlo Expectation Maximization -- 5 Experimental Results -- 5.1 Benchmarks -- 5.2 Models -- 5.3 Metric -- 5.4 Implementations Details -- 5.5 Results -- 6 Conclusions -- References -- Unsupervised Task Clustering for Multi-task Reinforcement Learning -- 1 Introduction -- 2 Related Work -- 3 Background and Notation -- 4 Clustered Multi-task Learning -- 4.1 Convergence Analysis -- 5 Experiments -- 5.1 Pendulum -- 5.2 Bipedal Walker -- 5.3 Atari -- 5.4 Ablations -- 6 Conclusion -- References -- Deep Model Compression via Two-Stage Deep Reinforcement Learning -- 1 Introduction -- 2 A Deep Reinforcement Learning Compression Framework -- 2.1 State -- 2.2 Action -- 2.3 Reward -- 2.4 The Proposed DRL Compression Structure -- 3 Pruning -- 3.1 Pruning from C Dimension: Channel Pruning -- 3.2 Pruning from H and W Dimensions: Variational Pruning -- 4 Quantization -- 5 Experiments -- 5.1 Settings -- 5.2 MNIST and CIFAR-10 -- 5.3 ImageNet. 327 $a5.4 Variational Pruning via Information Dropout -- 5.5 Single Layer Acceleration Performance -- 5.6 Time Complexity -- 6 Conclusion -- References -- Dropout's Dream Land: Generalization from Learned Simulators to Reality -- 1 Introduction -- 2 Related Works -- 2.1 Dropout -- 2.2 Domain Randomization -- 2.3 World Models -- 3 Dropout's Dream Land -- 3.1 Learning the Dream Environment -- 3.2 Interacting with Dropout's Dream Land -- 3.3 Training the Controller -- 4 Experiments -- 4.1 Comparison with Baselines -- 4.2 Inference Dropout and Dream2Real Generalization -- 4.3 When Should Dropout Masks Be Randomized During Controller Training? -- 4.4 Comparison to Standard Regularization Methods -- 4.5 Comparison to Explicit Ensemble Methods -- 5 Conclusion -- References -- Goal Modelling for Deep Reinforcement Learning Agents -- 1 Introduction -- 2 Background -- 3 Deep Reinforcement Learning with Goal Net -- 4 Experiments -- 4.1 Two Keys -- 4.2 3D Four Rooms with Subgoals -- 4.3 Kitchen Navigation and Interaction -- 5 Related Work -- 6 Discussion and Conclusion -- References -- Time Series, Streams, and Sequence Models -- Deviation-Based Marked Temporal Point Process for Marker Prediction -- 1 Introduction -- 2 Related Work -- 3 Proposed Algorithm -- 3.1 Problem Definition -- 3.2 Preliminaries -- 3.3 Proposed Deviation-Based Marked Temporal Point Process -- 3.4 Implementation Details -- 4 Experiments and Protocols -- 5 Results and Analysis -- 6 Conclusion and Discussion -- References -- Deep Structural Point Process for Learning Temporal Interaction Networks -- 1 Introduction -- 2 Related Work -- 3 Background -- 3.1 Temporal Interaction Network -- 3.2 Temporal Point Process -- 4 Proposed Model -- 4.1 Overview -- 4.2 Embedding Layer -- 4.3 Topological Fusion Encoder -- 4.4 Attentive Shift Encoder -- 4.5 Model Training -- 4.6 Model Analysis -- 5 Experiments. 327 $a5.1 Datasets. 330 $aThe multi-volume set LNAI 12975 until 12979 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2021, which was held during September 13-17, 2021. The conference was originally planned to take place in Bilbao, Spain, but changed to an online event due to the COVID-19 pandemic. The 210 full papers presented in these proceedings were carefully reviewed and selected from a total of 869 submissions. The volumes are organized in topical sections as follows: Research Track: Part I: Online learning; reinforcement learning; time series, streams, and sequence models; transfer and multi-task learning; semi-supervised and few-shot learning; learning algorithms and applications. Part II: Generative models; algorithms and learning theory; graphs and networks; interpretation, explainability, transparency, safety. Part III: Generative models; search and optimization; supervised learning; text mining and natural language processing; image processing, computer vision and visual analytics. Applied Data Science Track: Part IV: Anomaly detection and malware; spatio-temporal data; e-commerce and finance; healthcare and medical applications (including Covid); mobility and transportation. Part V: Automating machine learning, optimization, and feature engineering; machine learning based simulations and knowledge discovery; recommender systems and behavior modeling; natural language processing; remote sensing, image and video processing; social media. 410 0$aLecture Notes in Artificial Intelligence,$x2945-9141 ;$v12975 606 $aArtificial intelligence 606 $aComputer engineering 606 $aComputer networks 606 $aSocial sciences$xData processing 606 $aEducation$xData processing 606 $aData mining 606 $aComputer vision 606 $aArtificial Intelligence 606 $aComputer Engineering and Networks 606 $aComputer Application in Social and Behavioral Sciences 606 $aComputers and Education 606 $aData Mining and Knowledge Discovery 606 $aComputer Vision 615 0$aArtificial intelligence. 615 0$aComputer engineering. 615 0$aComputer networks. 615 0$aSocial sciences$xData processing. 615 0$aEducation$xData processing. 615 0$aData mining. 615 0$aComputer vision. 615 14$aArtificial Intelligence. 615 24$aComputer Engineering and Networks. 615 24$aComputer Application in Social and Behavioral Sciences. 615 24$aComputers and Education. 615 24$aData Mining and Knowledge Discovery. 615 24$aComputer Vision. 676 $a006.31 702 $aOliver$b Nuria$f1970- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910502999603321 996 $aMachine Learning and Knowledge Discovery in Databases$9773712 997 $aUNINA