LEADER 03135nam 2200637Ia 450 001 9910133752403321 005 20200520144314.0 010 $a9783642279348 010 $a3642279341 024 7 $a10.1007/978-3-642-27934-8 035 $a(CKB)3360000000365848 035 $a(SSID)ssj0000666017 035 $a(PQKBManifestationID)11432165 035 $a(PQKBTitleCode)TC0000666017 035 $a(PQKBWorkID)10646892 035 $a(PQKB)11579339 035 $a(DE-He213)978-3-642-27934-8 035 $a(MiAaPQ)EBC3070414 035 $z(PPN)258846194 035 $a(PPN)168311216 035 $a(EXLCZ)993360000000365848 100 $a20111222d2012 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 00$aConformal invariance $ean introduction to loops, interfaces and stochastic Loewner Evolution /$fMalte Henkel, Dragi Karevski, editors 205 $a1st ed. 2012. 210 $aBerlin ;$aHeidelberg $cSpringer$dc2012 215 $a1 online resource (XVI, 189 p. 69 illus., 19 illus. in color.) 225 1 $aLecture notes in physics,$x0075-8450 ;$vv. 853 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9783642279331 311 08$a3642279333 320 $aIncludes bibliographical references and index. 327 $aIntroduction to CFT -- Critical Interfaces and SLE -- Numerical tests of SLE -- Loop Models and boundary CFT. 330 $aConformal invariance has been a spectacularly successful tool in advancing our understanding of the two-dimensional phase transitions found in classical systems at equilibrium. This volume sharpens our picture of the applications of conformal invariance, introducing non-local observables such as loops and interfaces before explaining how they arise in specific physical contexts. It then shows how to use conformal invariance to determine their properties.   Moving on to cover key conceptual developments in conformal invariance, the book devotes much of its space to stochastic Loewner evolution (SLE), detailing SLE?s conceptual foundations as well as extensive numerical tests. The chapters then elucidate SLE?s use in geometric phase transitions such as percolation or polymer systems, paying particular attention to surface effects. As clear and accessible as it is authoritative, this publication is as suitable for non-specialist readers and graduate students alike. 410 0$aLecture notes in physics ;$v853. 606 $aConformal invariants 606 $aStochastic processes 606 $aPhase transformations (Statistical physics)$xMathematical models 615 0$aConformal invariants. 615 0$aStochastic processes. 615 0$aPhase transformations (Statistical physics)$xMathematical models. 676 $a530.14/3 676 $a530.143 701 $aHenkel$b M$g(Malte),$f1960-$053339 701 $aKarevski$b Dragi$01753848 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910133752403321 996 $aConformal invariance$94189874 997 $aUNINA