LEADER 05561nam 2200709 a 450 001 9910133642003321 005 20200520144314.0 010 $a9786613140630 010 $a9783527633524 010 $a3527633529 010 $a9781283140638 010 $a1283140632 010 $a9783527633517 010 $a3527633510 010 $a9783527633500 010 $a3527633502 035 $a(CKB)3400000000000399 035 $a(EBL)645014 035 $a(OCoLC)705353476 035 $a(SSID)ssj0000476935 035 $a(PQKBManifestationID)12202762 035 $a(PQKBTitleCode)TC0000476935 035 $a(PQKBWorkID)10495905 035 $a(PQKB)11490022 035 $a(MiAaPQ)EBC645014 035 $a(Perlego)1010032 035 $a(EXLCZ)993400000000000399 100 $a20120111d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHandbook of fluorescence spectroscopy and imaging $efrom single molecules to ensembles /$fMarkus Sauer, Johan Hofkens, and Jorg Enderlein 210 $aWeinheim $cWiley-VCH$d2011 215 $a1 online resource (293 p.) 300 $aDescription based upon print version of record. 311 08$a9783527316694 311 08$a3527316698 320 $aIncludes bibliographical references and index. 327 $aHandbook of Fluorescence Spectroscopy and Imaging: From Single Molecules to Ensembles; Contents; Preface; 1 Basic Principles of Fluorescence Spectroscopy; 1.1 Absorption and Emission of Light; 1.2 Spectroscopic Transition Strengths; 1.3 Lambert-Beer Law and Absorption Spectroscopy; 1.4 Fluorophore Dimerization and Isosbestic Points; 1.5 Franck-Condon Principle; 1.6 Temperature Effects on Absorption and Emission Spectra; 1.7 Fluorescence and Competing Processes; 1.8 Stokes Shift, Solvent Relaxation, and Solvatochroism; 1.9 Fluorescence Quantum Yield and Lifetime; 1.10 Fluorescence Anisotropy 327 $aReferences2 Fluorophores and Fluorescent Labels; 2.1 Natural Fluorophores; 2.2 Organic Fluorophores; 2.3 Different Fluorophore Classes; 2.4 Multichromophoric Labels; 2.5 Nanocrystals; References; 3 Fluorophore Labeling for Single-Molecule Fluorescence Spectroscopy (SMFS); 3.1 In Vitro Fluorescence Labeling; 3.2 Fluorescence Labeling in Living Cells; References; 4 Fluorophore Selection for Single-Molecule Fluorescence Spectroscopy (SMFS) and Photobleaching Pathways; References; 5 Fluorescence Correlation Spectroscopy; 5.1 Introduction; 5.2 Optical Set-Up; 5.3 Data Acquisition and Evaluation 327 $a5.4 Milliseconds to Seconds: Diffusion and Concentration5.4.1 Single-Focus FCS; 5.4.2 Dual-Focus FCS; 5.5 Nanoseconds to Microseconds: Photophysics, Conformational Fluctuations, Binding Dynamics; 5.6 Picoseconds to Nanoseconds: Rotational Diffusion and Fluorescence Antibunching; 5.6.1 Antibunching; 5.6.2 Rotational Diffusion; 5.7 Fluorescence Lifetime Correlation Spectroscopy; 5.8 Conclusion; References; 6 Excited State Energy Transfer; 6.1 Introduction; 6.2 Theory of (F?orster) Energy Transfer; 6.2.1 Mechanism and Mathematical Formalism of FRET 327 $a6.2.2 Measuring FRET Efficiencies Through Excited-State Lifetimes6.2.3 Spin Rules for FRET; 6.2.4 Homo-FRET and FRET-Induced Depolarization; 6.3 Experimental Approach for Single-Pair FRET-Experiments; 6.3.1 Single-Laser Excitation; 6.3.2 Alternating-Laser Excitation (ALEX); 6.4 Examples and Applications of FRET; 6.4.1 FRET Processes in Bulk Experiments; 6.4.1.1 FRET-Based Molecular Biosensors; 6.4.1.2 Energy Hopping and Trapping in Chromophore-Substituted Polyphenylene Dendrimers; 6.4.2 Single-Molecule Observation of FRET; 6.4.2.1 Light-Harvesting Systems: Phycobilisomes and Allophycocyanins 327 $a6.4.2.2 Hairpin Ribozyme Dynamics and Activity6.4.2.3 Protein (Un)folding and Dynamics; References; 7 Photoinduced Electron Transfer (PET) Reactions; 7.1 Fluorescence Quenching by PET; 7.2 Single-Molecule Fluorescence Spectroscopy to Study PET; 7.3 Single-Molecule Sensitive Fluorescence Sensors Based on PET; 7.4 PET Reporter System; 7.5 Monitoring Conformational Dynamics and Protein Folding by PET; 7.6 Biological and Diagnostic Applications; References; 8 Super-Resolution Fluorescence Imaging; 8.1 Diffraction Barrier of Optical Microscopy 327 $a8.2 Multi-Photon and Structured Illumination Microscopy 330 $aProviding much-needed information on fluorescence spectroscopy and microscopy, this ready reference covers detection techniques, data registration, and the use of spectroscopic tools, as well as new techniques for improving the resolution of optical microscopy below the resolution gap. Starting with the basic principles, the book goes on to treat fluorophores and labeling, single-molecule fluorescence spectroscopy and enzymatics, as well as excited state energy transfer, and super-resolution fluorescence imaging.Examples show how each technique can help in obtaining detailed and refine 606 $aFluorescence spectroscopy$vHandbooks, manuals, etc 606 $aFluorescence microscopy$vHandbooks, manuals, etc 615 0$aFluorescence spectroscopy 615 0$aFluorescence microscopy 676 $a543.56 700 $aSauer$b Markus$0975565 701 $aHofkens$b Johan$0521656 701 $aEnderlein$b J$g(Jorg)$0521657 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910133642003321 996 $aHandbook of fluorescence spectroscopy and imaging$92221391 997 $aUNINA