LEADER 05331nam 2200709 450 001 9910132268103321 005 20220111004710.0 010 $a1-119-01179-5 010 $a1-119-01180-9 010 $a1-119-01402-6 035 $a(CKB)3710000000366205 035 $a(EBL)1895913 035 $a(SSID)ssj0001573276 035 $a(PQKBManifestationID)16227077 035 $a(PQKBTitleCode)TC0001573276 035 $a(PQKBWorkID)14840558 035 $a(PQKB)11300028 035 $a(MiAaPQ)EBC1895913 035 $a(Au-PeEL)EBL1895913 035 $a(CaPaEBR)ebr11027517 035 $a(CaONFJC)MIL770120 035 $a(OCoLC)905919673 035 $a(PPN)190960620 035 $a(EXLCZ)993710000000366205 100 $a20150312h20152015 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aPhotonics$hVolume IV$iBiomedical photonics, spectroscopy, and microscopy. $escientific foundations, technology, and applications /$fedited by David L. Andrews, School of Chemical Sciences University of East Anglia Norwich, UK ; contributors, Thomas Aabo [and thirty three others] 210 1$aHoboken, New Jersey :$cWiley,$d2015. 210 4$dİ2015 215 $a1 online resource (602 p.) 225 1 $aA Wiley-Science Wise Co-Publication 300 $a"A Wiley-Science Wise Co-Publication"--Cover. 311 $a1-118-22555-4 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aPhotonics; Contents; List of Contributors; Preface; 1 Fluorescence; 1.1 Introduction; 1.2 Spectra; 1.2.1 Background and Theory; 1.2.2 Experimental; 1.2.3 Application Example-Melanin Spectra; 1.3 Quantum Yield; 1.3.1 Theory; 1.3.2 Experimental; 1.3.3 Application Example-ThT Detection of Sheet Structure; 1.4 Lifetime; 1.4.1 Theory; 1.4.2 Experimental; 1.4.3 Application Example-In Vivo Glucose Sensing; 1.5 Quenching; 1.5.1 Theory; 1.5.2 Application-Metal Ion Quenching; 1.6 Anisotropy; 1.6.1 Theory; 1.6.2 Experimental; 1.6.3 Application Example-Nanoparticle Metrology; 1.7 Microscopy 327 $a1.7.1 Systems and Techniques 1.7.2 Application Example-Gold Nanorods in Cells; 1.8 Conclusions; Acknowledgments; 2 Single-Molecule Detection and Spectroscopy; 2.1 Introduction; 2.2 Experimental Setups; 2.2.1 Principles; 2.2.2 Correction of Aberrations; 2.2.3 Polarization Structure at the Focus; 2.2.4 Various Microscopy Methods; 2.3 Fluorescence Spectroscopy; 2.3.1 Introduction, Signal-to-Noise Ratio; 2.3.2 Sample Preparation; 2.3.3 Orientation; 2.3.4 Blinking; 2.3.5 Bleaching; 2.3.6 Superresolution; 2.4 Fluorescence Correlation Spectroscopy; 2.4.1 Photon Counting Histograms, Burst Analysis 327 $a2.4.2 Fluorescence Correlation Spectroscopy 2.4.3 Multiparameter Analysis; 2.5 Fluorescence Excitation Spectroscopy; 2.5.1 Zero-Phonon Line and Phonon Wing; 2.5.2 Inhomogeneous Broadening; 2.5.3 Hole-Burning [30]; 2.5.4 Single-Molecule Spectroscopy; 2.5.5 Scope of Low-Temperature Single-Molecule Spectroscopy; 2.6 Other Detection Methods; 2.6.1 General Considerations on Signal, Background, and Noise; 2.6.2 Dark-Field Scattering, Total Internal Reflection; 2.6.3 Absorption, Extinction, Interference-Based Methods; 2.6.4 Pump-Probe and Photothermal Detections; 2.7 Conclusion; Acknowledgments 327 $aReferences 3 Resonance Energy Transfer; 3.1 Introduction; 3.2 History of RET; 3.2.1 The First Experiments; 3.2.2 Early Developments of Theory; 3.2.3 Fo?rster Theory; 3.3 The Photophysics of RET; 3.3.1 Primary Excitation Processes; 3.3.2 Coupling of Electronic Transitions; 3.3.3 Dissipation and Line Broadening; 3.3.4 Fo?rster Equation; 3.3.5 Orientation Dependence; 3.3.6 Polarization Features; 3.3.7 Diffusion Effects; 3.3.8 Long-Range Transfer; 3.3.9 Dexter Transfer; 3.4 Investigative Applications of RET in Molecular Biology; 3.4.1 Spectroscopic Ruler; 3.4.2 Conformational Change 327 $a3.4.3 Intensity-Based Imaging 3.4.4 Lifetime-Based Imaging; 3.4.5 Other Applications; 3.5 The Role of RET in Light-Harvesting Complexes; 3.5.1 Introduction; 3.5.2 Photosynthetic Excitons; Acknowledgments; References; 4 Biophotonics of Photosynthesis; 4.1 Introduction; 4.2 Structure of Pigment-Protein Complexes and Structure-Function Relationships; 4.2.1 Photosystem I (PS I) and Photosystem II (PS II); 4.2.2 PCs of Purple Bacteria; 4.3 Key Concepts in Physics of Pigment-Protein Complexes; 4.3.1 Excitons; 4.3.2 Excitation Energy Transfer 327 $a4.3.3 Homogeneous and In homogeneous Broadening, Zero-Phonon Lines (ZPLs), and Phonon Sidebands (PSBs) 330 $aComprehensive and accessible coverage of the whole of modern photonics Emphasizes processes and applications that specifically exploit photon attributes of light Deals with the rapidly advancing area of modern optics 410 2$aA Wiley-Science Wise Co-Publication 606 $aPhotonics 606 $aSpectrum analysis 606 $aMicroscopy 615 0$aPhotonics. 615 0$aSpectrum analysis. 615 0$aMicroscopy. 676 $a610.28 702 $aAndrews$b David L. 702 $aAabo$b Thomas 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910132268103321 996 $aPhotonics$92026196 997 $aUNINA