LEADER 05697nam 2200721 450 001 9910132255303321 005 20200520144314.0 010 $a3-527-68160-4 010 $a3-527-68158-2 010 $a3-527-68159-0 035 $a(CKB)3710000000355752 035 $a(EBL)2011352 035 $a(SSID)ssj0001541512 035 $a(PQKBManifestationID)11862917 035 $a(PQKBTitleCode)TC0001541512 035 $a(PQKBWorkID)11534978 035 $a(PQKB)10517895 035 $a(MiAaPQ)EBC2011352 035 $a(Au-PeEL)EBL2011352 035 $a(CaPaEBR)ebr11043791 035 $a(CaONFJC)MIL769768 035 $a(OCoLC)903898082 035 $a(PPN)22646024X 035 $a(EXLCZ)993710000000355752 100 $a20150509h20152015 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aTopological insulators $efundamentals and perspectives /$fedited by Frank Ortmann, Stephan Roche and Sergio O. Valenzuela ; with a foreword by Laurens W. Molenkamp ; contributors, Irene Aguilera [and thirty-five others] 210 1$aWeinheim, Germany :$cWiley-VCH,$d2015. 210 4$dİ2015 215 $a1 online resource (434 p.) 300 $aDescription based upon print version of record. 311 $a3-527-33702-4 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aCover; Title Page; Copyright; Contents; List of Contributors; Preface; Foreword; Part I: Fundamentals; Chapter 1 Quantum Spin Hall Effect and Topological Insulators; References; Chapter 2 Hybridization of Topological Surface States and Emergent States; 2.1 Introduction; 2.2 Topological Phases and Surface States; 2.2.1 Topological Insulators and Z2 Topological Numbers; 2.2.2 Weyl Semimetals; 2.2.3 Phase Transition between Topological Insulators and Weyl semimetals; 2.3 Hybridization of Topological Surface States and Emergent States; 2.3.1 Chirality of the Surface Dirac Cones; 2.3.2 Thin Film 327 $a2.3.3 Interface between Two TIs2.3.4 Superlattice; 2.4 Summary; Acknowledgments; References; Chapter 3 Topological Insulators in Two Dimensions; 3.1 Introduction; 3.2 2D TIs: Inverted HgTe/CdTe and Inverted InAs/GaSb Quantum Wells; 3.2.1 HgTe/CdTe Quantum Wells; 3.2.2 The System InAs/GaSb; 3.3 Magneto-Transport Experiments in HgTe Quantum Wells; 3.3.1 Sample Fabrication; 3.3.2 Transition from n- to p-Conductance; 3.3.3 Magnetic-Field-Induced Phase Transition; 3.4 The QSH effect in HgTe Quantum Wells; 3.4.1 Measurements of the Longitudinal Resistance; 3.4.2 Transport in Helical Edge States 327 $a3.4.3 Nonlocal Measurements3.4.4 Spin Polarization of the QSH Edge States; 3.5 QSH Effect in a Magnetic Field; 3.6 Probing QSH Edge States at a Local Scale; 3.7 QSH Effect in InAs/GaSb Quantum Wells: Experiments; 3.8 Conclusion and Outlook; Acknowledgements; References; Chapter 4 Topological Insulators, Topological Dirac semimetals, Topological Crystalline Insulators, and Topological Kondo Insulators; 4.1 Introduction; 4.2 Z2 Topological Insulators; 4.3 Topological Kondo Insulator Candidates; 4.4 Topological Quantum Phase Transitions; 4.5 Topological Dirac Semimetals 327 $a4.6 Topological Crystalline Insulators4.7 Magnetic and Superconducting Doped Topological Insulators; Acknowledgements; References; Part II: Materials and Structures; Chapter 5 Ab Initio Calculations of Two-Dimensional Topological Insulators; 5.1 Introduction; 5.2 Early Examples of 2D TIs; 5.2.1 Graphene and the Quantum Spin Hall Effect; 5.2.2 HgTe: Band Inversion and Topology in a 2D TI; 5.3 Thin Bi and Sb Films; 5.3.1 Bilayers; 5.3.2 Thicker Layers; 5.3.3 Alloyed Layers; 5.3.4 Supported Layers; 5.4 Compounds; 5.4.1 Binary Compounds of A2B3 Type 327 $a5.4.2 Ternary Compounds: A'A2B4 and A'2A2B4 Types5.5 Summary; Acknowledgments; References; Chapter 6 Density Functional Theory Calculations of Topological Insulators; 6.1 Introduction; 6.2 Methodology; 6.2.1 Foundations of Density Functional Theory; 6.2.2 Practical Aspects of DFT Calculations; 6.2.3 Including Spin-Orbit Interactions; 6.2.4 Calculating Z2 Topological Invariants; 6.3 Bismuth Chalcogenide Topological Insulators: A Case Study; 6.3.1 Bulk Band Structures of Bi2Se3 and Bi2Te3; 6.3.2 Topologically Protected States at the (111) Surface of Bismuth Chalcogenides 327 $a6.3.3 Nonstoichiometric and Functionalized Terminations of the Bi2Se3 (111) Surface 330 $aFrank Ortmann is Head of the Computational Nanoelectronics group at the Institute for Materials Science at the Technische Universita?t Dresden, Germany. He is specialized on large-scale electronic transport simulations linked with ab initio electronic structure methods and on nanoelectronics of materials. Frank Ortmann studied physics at the University of Jena, Germany, where he received his PhD for a work on the topic of charge transport in organic crystals in 2009. He moved to the French Commissariat a l'Energie Atomique et aux Energies Alternatives Grenoble, France, for a postdoctoral stay f 606 $aCondensed matter 606 $aTopological dynamics 606 $aNanostructured materials 615 0$aCondensed matter. 615 0$aTopological dynamics. 615 0$aNanostructured materials. 676 $a530.41 702 $aOrtmann$b Frank 702 $aRoche$b Stephan 702 $aValenzuela$b Sergio O. 702 $aMolenkamp$b Laurens W. 702 $aAguilera$b Irene 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910132255303321 996 $aTopological insulators$92095376 997 $aUNINA