LEADER 04421nam 2200721 450 001 9910132227903321 005 20230707220246.0 010 $a1-118-90882-1 010 $a1-118-90886-4 010 $a1-118-90896-1 035 $a(CKB)3710000000093492 035 $a(EBL)1650850 035 $a(SSID)ssj0001211676 035 $a(PQKBManifestationID)11836397 035 $a(PQKBTitleCode)TC0001211676 035 $a(PQKBWorkID)11206227 035 $a(PQKB)10488919 035 $a(OCoLC)874321906 035 $a(MiAaPQ)EBC1650850 035 $a(Au-PeEL)EBL1650850 035 $a(CaPaEBR)ebr10849300 035 $a(CaONFJC)MIL584585 035 $a(EXLCZ)993710000000093492 100 $a20140327h20142014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aComputational design of lightweight structures /$fBenoi?t Descamps 210 1$aLondon, England ;$aHoboken, New Jersey :$cISTE :$cWiley,$d2014. 210 4$dİ2014 215 $a1 online resource (162 p.) 225 0 $aFOCUS : Numerical Methods in Engineering Series,$x2051-249X 225 1 $aFOCUS series 300 $aDescription based upon print version of record. 311 $a1-84821-674-2 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Contents; Preface; Introduction; Chapter 1. Truss Layout Optimization; 1.1. Standard theory of mathematical programming; 1.2. Governing equations of truss structures; 1.3. Layout and topology optimization; 1.3.1. Basic problem statement; 1.3.2. Problem equivalence and numerical solution; 1.4. Generalization; 1.4.1. Self-weight and multiple loading; 1.4.2. Compliance optimization; 1.4.3. Volume optimization; 1.4.4. Stress singularity; 1.4.5. Local buckling singularity; 1.5. Truss geometry and topology optimization; 1.5.1. Optimization of nodal positions 327 $a1.5.2. Melting node effect1.6. Concluding remarks; Chapter 2. Unified Formulation; 2.1. Literature review; 2.2. Disaggregation of equilibrium equations; 2.3. Minimum volume problem; 2.4. Minimum compliance problem; 2.5. Reduced formulation for single loading; 2.6. Nonlinear programming; 2.6.1. Barrier problem; 2.6.2. Sequential quadratic programming with trust regions; 2.6.3. Verification test; 2.7. Design settings; 2.8. Concluding remarks; Chapter 3. Stability Considerations; 3.1. Literature review; 3.2. Lower bound plastic design formulation; 3.3. Nominal force method for local stability 327 $a3.4. Local buckling criterion3.5. Formulation including stability constraints; 3.6. Numerical examples; 3.6.1. Three-hinged arch; 3.6.2. L-shaped frame; 3.7. Concluding remarks; Chapter 4. Structural Design Applications; 4.1. Reticulated dome; 4.2. Lateral bracing of Winter's type column; 4.3. Arch bridge; 4.4. Suspension bridge; 4.5. Dutch Maritime Museum; Conclusions and Future Prospects; Appendix; Bibliography; Index 330 $aThe author of this book presents a general, robust, and easy-to-use method that can handle many design parameters efficiently.Following an introduction, Chapter 1 presents the general concepts of truss layout optimization, starting from topology optimization where structural component sizes and system connectivity are simultaneously optimized. To fully realize the potential of truss layout optimization for the design of lightweight structures, the consideration of geometrical variables is then introduced.Chapter 2 addresses truss geometry and topology optimization by combining m 410 0$aFocus series in numerical methods in engineering. 410 0$aFocus series (London, England) 606 $aStructural engineering$xMathematical models 606 $aBuilding materials 606 $aLightweight construction 606 $aSpace frame structures$xMaterials 606 $aStructural design$xMathematics 615 0$aStructural engineering$xMathematical models. 615 0$aBuilding materials. 615 0$aLightweight construction. 615 0$aSpace frame structures$xMaterials. 615 0$aStructural design$xMathematics. 676 $a624.1 700 $aDescamps$b Benoi?t$0989965 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910132227903321 996 $aComputational design of lightweight structures$92264264 997 $aUNINA