LEADER 05422nam 2200661 450 001 9910132214703321 005 20200520144314.0 010 $a3-527-67592-2 010 $a3-527-67590-6 010 $a3-527-67593-0 035 $a(CKB)3710000000097412 035 $a(EBL)1658827 035 $a(SSID)ssj0001211537 035 $a(PQKBManifestationID)11687413 035 $a(PQKBTitleCode)TC0001211537 035 $a(PQKBWorkID)11206267 035 $a(PQKB)10835115 035 $a(OCoLC)875098593 035 $a(Au-PeEL)EBL1658827 035 $a(CaPaEBR)ebr10855737 035 $a(CaONFJC)MIL586300 035 $a(PPN)19653352X 035 $a(MiAaPQ)EBC1658827 035 $a(EXLCZ)993710000000097412 100 $a20140413h20142014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aBridging heterogeneous and homogeneous catalysis $econcepts, strategies, and applications /$fedited by Can Li and Yan Liu 210 1$aWeinheim an der Bergstrasse, Germany :$cWiley-VCH,$d2014. 210 4$dİ2014 215 $a1 online resource (651 p.) 300 $aDescription based upon print version of record. 311 $a3-527-33583-8 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aBridging Heterogeneous and Homogeneous Catalysis; Contents; Preface; List of Contributors; Chapter 1 Acid-Base Cooperative Catalysis for Organic Reactions by Designed Solid Surfaces with Organofunctional Groups; 1.1 Introduction; 1.2 Bifunctional Catalysts Possessing Both Acidic and Basic Organic Groups; 1.2.1 Urea-Amine Bifunctional Catalyst; 1.2.2 Sulfonic or Carboxylic Acid-Amine Bifunctional Catalyst; 1.3 Bifunctional Catalysts Possessing Basic Organic Groups and Acid Sites Derived from Their Support Surface; 1.3.1 Organic Base-Catalyzed Reactions Enhanced by SiO2 327 $a1.3.2 Amine-Catalyzed Reactions Enhanced by Acid Site on Silica-Alumina1.3.3 Control of Acid-Base Interaction on Solid Surface; 1.3.4 Cooperative Catalysis of Acid Site, Primary Amine, and Tertiary Amine; 1.4 Prospect; References; Chapter 2 Catalytic Reactions in or by Room-Temperature Ionic Liquids: Bridging the Gap between Homogeneous and Heterogeneous Catalysis; 2.1 Introduction and Background; 2.2 Catalysis with IL-Supported or Mediated Metal Nanoparticles; 2.2.1 Preparation of MNPs in ILs; 2.2.1.1 IL Itself as the Reducing Agent; 2.2.1.2 Molecular Hydrogen as Reducing Agent 327 $a2.2.1.3 NaBH4 as the Reducing Agent2.2.1.4 Other Reducing Agents; 2.2.2 Characterization of IL-Supported or Mediated MNPs; 2.2.2.1 XPS and NMR; 2.2.2.2 SEM and TEM; 2.2.2.3 Molecular Dynamics Simulations; 2.2.3 Hydrogenation Reactions; 2.2.4 IL-Supported Pd NPs; 2.2.5 IL-Supported Pt and Ir NPs; 2.2.6 IL-Supported Ru NPs; 2.2.6.1 IL-Supported Rh NPs; 2.2.7 C-C Coupling Reactions; 2.2.7.1 Suzuki Reaction; 2.2.7.2 Mizoroki-Heck Reaction; 2.2.7.3 Stille Reaction; 2.2.7.4 Sonogashira Reaction; 2.2.7.5 Ullmann Reaction; 2.2.8 Brief Summary 327 $a2.3 Reactions Catalyzed by Solid-Supported IL: Heterogeneous Catalysis with Homogeneous Performance2.3.1 Introduction; 2.3.1.1 Design, Preparation, and Properties of Supported IL-Phase Catalysis; 2.3.2 Design, Preparation, and Properties of Silica Gel-Confined IL Catalysts; 2.3.2.1 Design, Preparation, and Properties of Covalently Supported IL Catalysts; 2.3.3 Catalytic Reaction with Supported IL Catalysts; 2.3.3.1 Catalytic Hydrogenation; 2.3.3.2 Selective Oxidation; 2.3.3.3 Catalytic Carbonylation Reaction; 2.3.3.4 Water-Gas Shift Reaction; 2.3.3.5 Isomerization and Oligomerization 327 $a2.3.3.6 Alkylation and Esterification Reactions2.3.3.7 Asymmetric Catalysis; 2.3.3.8 Enzyme Catalysis; 2.3.4 Brief Summary; 2.4 Outlook; References; Chapter 3 Heterogeneous Catalysis with Organic-Inorganic Hybrid Materials; 3.1 Introduction; 3.1.1 Ordered Mesoporous Silica; 3.1.2 Organic-Inorganic Hybrid Materials; 3.1.3 Heterogeneous Catalysis; 3.2 Organic-Inorganic Hybrid Materials; 3.2.1 General Advantages of Organic-Inorganic Hybrid Materials; 3.2.2 Grafting and Co-Condensation; 3.2.2.1 Amine Groups; 3.2.2.2 Ionic Liquids (ILs); 3.2.2.3 Others 327 $a3.2.3 Periodic Mesoporous Organosilicas (PMOs) 330 $aThere are two main disciplines in catalysis research -- homogeneous and heterogeneous catalysis. This is due to the fact that the catalyst is either in the same phase (homogeneous catalysis) as the reaction being catalyzed or in a different phase (heterogeneous catalysis). Over the past decade, various approaches have been implemented to combine the advantages of homogeneous catalysis (efficiency, selectivity) with those of heterogeneous catalysis (stability, recovery) by the heterogenization of homogeneous catalysts or by carrying out homogeneous reactions under heterogeneous conditions. 606 $aHeterogeneous catalysis$xData processing 606 $aCatalysis$xIndustrial applications 615 0$aHeterogeneous catalysis$xData processing. 615 0$aCatalysis$xIndustrial applications. 676 $a541.395 702 $aLi$b Can 702 $aLiu$b Yan 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910132214703321 996 $aBridging heterogeneous and homogeneous catalysis$92235317 997 $aUNINA