LEADER 05440nam 2200685 450 001 9910132211803321 005 20230803202201.0 010 $a1-5231-1092-9 010 $a1-118-93114-9 010 $a1-118-93112-2 010 $a1-118-93113-0 035 $a(CKB)3710000000099093 035 $a(EBL)1676667 035 $a(SSID)ssj0001220807 035 $a(PQKBManifestationID)11682928 035 $a(PQKBTitleCode)TC0001220807 035 $a(PQKBWorkID)11220999 035 $a(PQKB)10913591 035 $a(OCoLC)878677248 035 $a(Au-PeEL)EBL1676667 035 $a(CaPaEBR)ebr10862655 035 $a(CaONFJC)MIL620523 035 $a(OCoLC)878263210 035 $a(MiAaPQ)EBC1676667 035 $a(EXLCZ)993710000000099093 100 $a20140429h20142014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMechanical shock /$fChristian Lalanne 205 $aThird edition. 210 1$aLondon, England ;$aHoboken, New Jersey :$cISTE Ltd :$cJohn Wiley & Sons,$d2014. 210 4$dİ2014 215 $a1 online resource (466 p.) 225 0 $aMechanical Vibrations and Shock Analysis ;$vVolume 2 300 $aDescription based upon print version of record. 311 $a1-84821-645-9 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Contents; Foreword to Series; Introduction; List of Symbols; Chapter 1. Shock Analysis; 1.1. Definitions; 1.1.1. Shock; 1.1.2. Transient signal; 1.1.3. Jerk; 1.1.4. Simple (or perfect) shock; 1.1.5. Half-sine shock; 1.1.6. Versed sine (or haversine) shock; 1.1.7. Terminal peak sawtooth (TPS) shock (or final peak sawtooth (FPS)); 1.1.8. Initial peak sawtooth (IPS) shock; 1.1.9. Square shock; 1.1.10. Trapezoidal shock; 1.1.11. Decaying sinusoidal pulse; 1.1.12. Bump test; 1.1.13. Pyroshock; 1.2. Analysis in the time domain; 1.3. Temporal moments; 1.4. Fourier transform 327 $a1.4.1. Definition1.4.2. Reduced Fourier transform; 1.4.3. Fourier transforms of simple shocks; 1.4.4. What represents the Fourier transform of a shock?; 1.4.5. Importance of the Fourier transform; 1.5. Energy spectrum; 1.5.1. Energy according to frequency; 1.5.2. Average energy spectrum; 1.6. Practical calculations of the Fourier transform; 1.6.1. General; 1.6.2. Case: signal not yet digitized; 1.6.3. Case: signal already digitized; 1.6.4. Adding zeros to the shock signal before the calculation of its Fourier transform; 1.6.5. Windowing; 1.7. The interest of time-frequency analysis 327 $a1.7.1. Limit of the Fourier transform1.7.2. Short term Fourier transform (STFT); 1.7.3. Wavelet transform; Chapter 2. Shock Response Spectrum; 2.1. Main principles; 2.2. Response of a linear one-degree-of-freedom system; 2.2.1. Shock defined by a force; 2.2.2. Shock defined by an acceleration; 2.2.3. Generalization; 2.2.4. Response of a one-degree-of-freedom system to simple shocks; 2.3. Definitions; 2.3.1. Response spectrum; 2.3.2. Absolute acceleration SRS; 2.3.3. Relative displacement shock spectrum; 2.3.4. Primary (or initial) positive SRS; 2.3.5. Primary (or initial) negative SRS 327 $a2.3.6. Secondary (or residual) SRS2.3.7. Positive (or maximum positive) SRS; 2.3.8. Negative (or maximum negative) SRS; 2.3.9. Maximax SRS; 2.4. Standardized response spectra; 2.4.1. Definition; 2.4.2. Half-sine pulse; 2.4.3. Versed sine pulse; 2.4.4. Terminal peak sawtooth pulse; 2.4.5. Initial peak sawtooth pulse; 2.4.6. Square pulse; 2.4.7. Trapezoidal pulse; 2.5. Choice of the type of SRS; 2.6. Comparison of the SRS of the usual simple shapes; 2.7. SRS of a shock defined by an absolute displacement of the support; 2.8. Influence of the amplitude and the duration of the shock on its SRS 327 $a2.9. Difference between SRS and extreme response spectrum (ERS)2.10. Algorithms for calculation of the SRS; 2.11. Subroutine for the calculation of the SRS; 2.12. Choice of the sampling frequency of the signal; 2.13. Example of use of the SRS; 2.14. Use of SRS for the study of systems with several degrees of freedom; 2.15. Damage boundary curve; Chapter 3. Properties of Shock Response Spectra; 3.1. Shock response spectra domains; 3.2. Properties of SRS at low frequencies; 3.2.1. General properties; 3.2.2. Shocks with zero velocity change 330 $aThis volume considers the shock response spectrum, its various definitions, properties and the assumptions involved in its calculation. In developing the practical application of these concepts, the forms of shock most often used with test facilities are presented together with their characteristics and indications of how to establish test configurations comparable with those in the real, measured environment. This is followed by a demonstration of how to meet these specifications using standard laboratory equipment - shock machines, electrodynamic exciters driven by a time signal or a respons 410 0$aISTE 606 $aMechanical engineering$vSpecifications 606 $aCondensed matter$xComputer simulation 615 0$aMechanical engineering 615 0$aCondensed matter$xComputer simulation. 676 $a620.1125 700 $aLalanne$b Christian$0510072 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910132211803321 996 $aMechanical shock$9771711 997 $aUNINA