LEADER 05461nam 2200697 450 001 9910132211603321 005 20230803202134.0 010 $a1-5231-1093-7 010 $a1-118-93117-3 010 $a1-118-93115-7 010 $a1-118-93116-5 035 $a(CKB)3710000000099094 035 $a(EBL)1676668 035 $a(SSID)ssj0001220808 035 $a(PQKBManifestationID)11796958 035 $a(PQKBTitleCode)TC0001220808 035 $a(PQKBWorkID)11240041 035 $a(PQKB)10512670 035 $a(OCoLC)878678092 035 $a(Au-PeEL)EBL1676668 035 $a(CaPaEBR)ebr10862679 035 $a(CaONFJC)MIL620522 035 $a(OCoLC)878263211 035 $a(MiAaPQ)EBC1676668 035 $a(EXLCZ)993710000000099094 100 $a20140502h20142014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRandom vibration /$fChristian Lalanne 205 $aThird edition. 210 1$aLondon, England ;$aHoboken, New Jersey :$cISTE Ltd :$cJohn Wiley & Sons,$d2014. 210 4$dİ2014 215 $a1 online resource (649 p.) 225 0 $aMechanical Vibration and Shock Analysis ;$vVolume 3 300 $aDescription based upon print version of record. 311 $a1-84821-646-7 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright; Contents; Foreword to Series; Introduction; List of Symbols; Chapter 1. Statistical Properties of a Random Process; 1.1. Definitions; 1.1.1. Random variable; 1.1.2. Random process; 1.2. Random vibration in real environments; 1.3. Random vibration in laboratory tests; 1.4. Methods of random vibration analysis; 1.5. Distribution of instantaneous values; 1.5.1. Probability density; 1.5.2. Distribution function; 1.6. Gaussian random process; 1.7. Rayleigh distribution; 1.8. Ensemble averages: through the process; 1.8.1. n order average; 1.8.2. Centered moments 327 $a1.8.3. Variance1.8.4. Standard deviation; 1.8.5. Autocorrelation function; 1.8.6. Cross-correlation function; 1.8.7. Autocovariance; 1.8.8. Covariance; 1.8.9. Stationarity; 1.9. Temporal averages: along the process; 1.9.1. Mean; 1.9.2. Quadratic mean - rms value; 1.9.3. Moments of order n; 1.9.4. Variance - standard deviation; 1.9.5. Skewness; 1.9.6. Kurtosis; 1.9.7. Crest Factor; 1.9.8. Temporal autocorrelation function; 1.9.9. Properties of the autocorrelation function; 1.9.10. Correlation duration; 1.9.11. Cross-correlation; 1.9.12. Cross-correlation coefficient; 1.9.13. Ergodicity 327 $a1.10. Significance of the statistical analysis (ensemble or temporal)1.11. Stationary and pseudo-stationary signals; 1.13. Sliding mean; 1.14. Test of stationarity; 1.14.1. The reverse arrangements test (RAT); 1.14.2. The runs test; 1.15 Identification of shocks and/or signal problems; 1.16. Breakdown of vibratory signal into "events": choice of signal samples; 1.17. Interpretation and taking into account of environment variation; Chapter 2. Random Vibration Properties in the Frequency Domain; 2.1. Fourier transform; 2.2. Power spectral density; 2.2.1. Need; 2.2.2. Definition 327 $a2.3. Amplitude Spectral Density2.4. Cross-power spectral density; 2.5. Power spectral density of a random process; 2.6. Cross-power spectral density of two processes; 2.7. Relationship between the PSD and correlation function of a process; 2.8. Quadspectrum - cospectrum; 2.9. Definitions; 2.9.1. Broadband process; 2.9.2. White noise; 2.9.3. Band-limited white noise; 2.9.4. Narrow band process; 2.9.5. Colors of noise; 2.10. Autocorrelation function of white noise; 2.11. Autocorrelation function of band-limited white noise; 2.12. Peak factor 327 $a2.13. Effects of truncation of peaks of acceleration signal on the PSD2.14. Standardized PSD/density of probability analogy; 2.15. Spectral density as a function of time; 2.16. Sum of two random processes; 2.17. Relationship between the PSD of the excitation and the response of a linear system; 2.18. Relationship between the PSD of the excitation and the cross-power spectral density of the response of a linear system; 2.19. Coherence function; 2.20. Transfer function calculation from random vibration measurements; 2.20.1. Theoretical relations; 2.20.2. Presence of noise on the input 327 $a2.20.3. Presence of noise on the response 330 $aThe vast majority of vibrations encountered in the real environment are random in nature. Such vibrations are intrinsically complicated and this volume describes the process that enables us to simplify the required analysis, along with the analysis of the signal in the frequency domain.The power spectrum density is also defined, together with the requisite precautions to be taken in its calculations as well as the processes (windowing, overlapping) necessary to obtain improved results.An additional complementary method - the analysis of statistical properties of the time signal - i 410 0$aISTE 606 $aMechanical engineering$xStandards 606 $aStrength of materials$vCongresses 615 0$aMechanical engineering$xStandards. 615 0$aStrength of materials 676 $a620.11248 700 $aLalanne$b Christian$0510072 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910132211603321 996 $aRandom vibration$9771746 997 $aUNINA