LEADER 05601nam 2200733 450 001 9910132205303321 005 20200520144314.0 010 $a1-118-69789-8 010 $a1-118-69719-7 010 $a1-118-69791-X 035 $a(CKB)3710000000106462 035 $a(EBL)1683802 035 $a(SSID)ssj0001195731 035 $a(PQKBManifestationID)11703175 035 $a(PQKBTitleCode)TC0001195731 035 $a(PQKBWorkID)11161113 035 $a(PQKB)10802183 035 $a(OCoLC)867001315 035 $a(MiAaPQ)EBC1683802 035 $a(DLC) 2013051083 035 $a(Au-PeEL)EBL1683802 035 $a(CaPaEBR)ebr10867125 035 $a(CaONFJC)MIL604408 035 $a(OCoLC)879074476 035 $a(PPN)190664223 035 $a(EXLCZ)993710000000106462 100 $a20140515h20142014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aLigand design in medicinal inorganic chemistry /$fedited by Tim Storr ; contributors Peter J. Barnard [and thirty seven others] 210 1$aChichester, England :$cWiley,$d2014. 210 4$dİ2014 215 $a1 online resource (493 p.) 300 $aDescription based upon print version of record. 311 $a1-118-48852-0 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aCover; Title Page; Copyright; Contents; About the Editor; List of Contributors; Chapter 1 Introduction to Ligand Design in Medicinal Inorganic Chemistry; References; Chapter 2 Platinum-Based Anticancer Agents; 2.1 Introduction; 2.2 The advent of platinum-based anticancer agents; 2.3 Strategies for overcoming the limitations of cisplatin; 2.4 The influence of ligands on the physicochemical properties of platinum anticancer complexes; 2.4.1 Lipophilicity; 2.4.2 Reactivity; 2.4.3 Rate of reduction; 2.5 Ligands for enhancing the anticancer activity of platinum complexes 327 $a2.5.1 Ligands for improving DNA affinity2.5.2 Ligands for inhibiting enzymes; 2.6 Ligands for enhancing the tumour selectivity of platinum complexes; 2.6.1 Ligands for targeting transporters; 2.6.2 Ligands for targeting receptors; 2.6.3 Ligands for targeting the EPR effect; 2.6.4 Ligands for targeting bone cancer; 2.7 Ligands for photoactivatable platinum complexes; 2.8 Conclusions; References; Chapter 3 Coordination Chemistry and Ligand Design in the Development of Metal Based Radiopharmaceuticals; 3.1 Introduction; 3.1.1 Metals in nuclear medicine 327 $a3.1.2 The importance of coordination chemistry3.1.3 Overview; 3.2 General metal based radiopharmaceutical design; 3.2.1 Choice of radionuclide; 3.2.2 Production of the radiometal starting materials; 3.2.3 Ligand and chelate design consideration; 3.3 Survey of the coordination chemistry of radiometals applicable to nuclear medicine; 3.3.1 Technetium; 3.3.2 Rhenium; 3.3.3 Gallium; 3.3.4 Indium; 3.3.5 Yttrium and lanthanides; 3.3.6 Copper; 3.3.7 Zirconium; 3.3.8 Scandium; 3.3.9 Cobalt; 3.4 Conclusions; References; Chapter 4 Ligand Design in d-Block Optical Imaging Agents and Sensors 327 $a4.1 Summary and scope4.2 Introduction; 4.2.1 Criteria for biological imaging optical probes; 4.3 Overview of transition-metal optical probes in biomedicinal applications; 4.3.1 Common families of transition metal probes; 4.4 Ligand design for controlling photophysics; 4.4.1 Photophysical processes in transition metal optical imaging agents and sensors; 4.4.2 Photophysically active ligand families-tuning electronic levels; 4.4.3 Ligands which control photophysics through indirect effects; 4.4.4 Transition metal optical probes with carbonyl ligands; 4.5 Ligand design for controlling stability 327 $a4.6 Ligand design for controlling transport and localisation4.6.1 Passive diffusion; 4.6.2 Active transport; 4.7 Ligand design for controlling distribution; 4.7.1 Mitochondrial-targeting probes; 4.7.2 Nuclear-targeting probes; 4.7.3 Bioconjugation; 4.8 Selected examples of ligand design for important individual probes; 4.8.1 A pH-sensitive ligand to control Ir luminescence; 4.8.2 Dimeric NHC ligands for gold cyclophanes; 4.9 Transition metal probes incorporating or capable of more than one imaging mode; 4.9.1 Bimodal MRI/optical probes; 4.9.2 Bimodal radio/optical probes 327 $a4.9.3 Bimodal IR/optical probes 330 $aIncreasing the potency of therapeutic compounds, while limiting side-effects, is a common goal in medicinal chemistry. Ligands that effectively bind metal ions and also include specific features to enhance targeting, reporting, and overall efficacy are driving innovation in areas of disease diagnosis and therapy. Ligand Design in Medicinal Inorganic Chemistry presents the state-of-the-art in ligand design for medicinal inorganic chemistry applications. Each individual chapter describes and explores the application of compounds that either target a disease site, or are activated 606 $aDNA-drug interactions 606 $aLigand binding (Biochemistry) 606 $aDrugs$xDesign 606 $aPharmaceutical chemistry 615 0$aDNA-drug interactions. 615 0$aLigand binding (Biochemistry) 615 0$aDrugs$xDesign. 615 0$aPharmaceutical chemistry. 676 $a612/.01524 702 $aStorr$b Tim 702 $aBarnard$b Peter J. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910132205303321 996 $aLigand design in medicinal inorganic chemistry$92034117 997 $aUNINA LEADER 00950oas 2200289Ia 450 001 9910166633303321 005 20221215205146.0 035 $a(EXLCZ)997588504500041 100 $a20781020b19141915 uy a 101 0 $aeng 135 $aurmn|---auuua 200 04$aThe Ohio naturalist and journal of science$b[electronic resource] 210 $aColumbus, Ohio $cBiological Club of the Ohio State University$d1914-1915 215 $a1 online resource (1 v.)$cill 300 $a"A journal devoted more especially to the natural history of Ohio." 606 $aScience$vPeriodicals 606 $aNatural history$vPeriodicals 615 0$aScience 615 0$aNatural history 676 $a570.5 712 02$aOhio State University.$bBiological Club. 712 02$aOhio Academy of Science. 801 0$bOCLC 801 2$bVS:CL 912 $a9910166633303321 996 $aThe Ohio naturalist and journal of science$92064628 997 $aUNINA