LEADER 05193nam 2200697 450 001 9910132204903321 005 20200903223051.0 010 $a1-118-98445-5 010 $a1-118-98447-1 010 $a1-118-98446-3 035 $a(CKB)3710000000187049 035 $a(EBL)1734308 035 $a(SSID)ssj0001340227 035 $a(PQKBManifestationID)11866476 035 $a(PQKBTitleCode)TC0001340227 035 $a(PQKBWorkID)11355930 035 $a(PQKB)10316425 035 $a(MiAaPQ)EBC1734308 035 $a(Au-PeEL)EBL1734308 035 $a(CaPaEBR)ebr10892213 035 $a(CaONFJC)MIL627086 035 $a(OCoLC)883892083 035 $a(EXLCZ)993710000000187049 100 $a20140719h20142014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aCO2 biofixation by microalgae $emodeling, estimation and control /$fSihem Tebbani [and four others] 210 1$aLondon, [England] ;$aHoboken, New Jersey :$cISTE :$cWiley,$d2014. 210 4$dİ2014 215 $a1 online resource (191 p.) 225 1 $aFocus : Bioengineering and Health Science Series,$x2051-249X 300 $aDescription based upon print version of record. 311 $a1-84821-598-3 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright; Contents ; Introduction; Chapter 1. Microalgae; 1.1. Definition; 1.2. Characteristics; 1.3. Uses of microalgae; 1.3.1. Nutrition; 1.3.2. Pharmaceuticals; 1.3.3. Cosmetics; 1.3.4. Energy; 1.3.5. Environmental field; 1.4. Microalgae cultivation systems; 1.4.1. Open systems; 1.4.2. Closed systems: photobioreactors; 1.5. Factors affecting algae cultivation; 1.5.1. Light; 1.5.2. Temperature; 1.5.3. pH; 1.5.4. Nutrients; 1.5.5. Medium salinity; 1.5.6. Agitation; 1.5.7. Gas-liquid mass transfer; 1.6. Conclusion; Chapter 2. Co2 Biofixation 327 $a2.1. Selection of microalgae species2.1.1. Photosynthetic activity; 2.1.2. CO2 concentrating mechanism "CCM"; 2.1.3. Choice of the microalgae species; 2.2. Optimization of the photobioreactor design; 2.3. Conclusion; Chapter 3. Bioprocess Modeling; 3.1. Operating modes; 3.1.1. Batch mode; 3.1.2. Fed-batch mode; 3.1.3. Continuous mode; 3.2. Growth rate modeling; 3.2.1. General models; 3.2.2. Droop's model; 3.2.3. Models dealing with light effect; 3.2.4. Model dealing with carbon effect; 3.2.5. Models of the simultaneous influence of several parameters; 3.2.6. Choice of growth rate model 327 $a3.3. Mass balance models3.4. Model parameter identification; 3.5. Example: Chlorella vulgaris culture; 3.5.1. Experimental set-up; 3.5.2. Modeling; 3.5.3. Parametric identification; 3.6. Conclusion; Chapter 4. Estimation of Biomass Concentration; 4.1. Generalities on estimation; 4.2. State of the art; 4.3. Kalman filter; 4.3.1. Principle; 4.3.2. Discrete Kalman filter; 4.3.3. Discrete extended Kalman filter; 4.3.4. Kalman filter settings; 4.3.5. Example; 4.4. Asymptotic observer; 4.4.1. Principle; 4.4.2. Example; 4.5. Interval observer; 4.5.1. Principle; 4.5.2. Example 327 $a4.6. Experimental validation on Chlorella vulgaris culture4.7. Conclusion; Chapter 5. Bioprocess Control; 5.1. Determination of optimal operating conditions; 5.1.1. Optimal operating conditions; 5.1.2. Optimal set-point; 5.2. Generalities on control; 5.3. State of the art; 5.4. Generic Model Control; 5.4.1. Principle; 5.4.2. Advantages and disadvantages; 5.4.3. Example; 5.5. Input/output linearizing control; 5.5.1. Principle; 5.5.2. Advantages and disadvantages; 5.5.3. Example; 5.6. Nonlinear model predictive control; 5.6.1. Principle; 5.6.2. Nonlinear Model Predictive Control 327 $a5.6.3. Advantages and disadvantages5.6.4. Example; 5.7. Application to Chlorella vulgaris cultures; 5.7.1. GMC law performance; 5.7.2. Performance of the predictive control law; 5.8. Conclusion; Conclusion; Bibliography; Index 330 $aDue to the consequences of globa l warming and significant greenhouse gas emissions, several ideas have been studied to reduce these emissions or to suggest solut ions for pollutant remov al. The most promising ideas are reduced consumption, waste recovery and waste treatment by biological systems. In this latter category, studies have demonstrated that the use of microalgae is a very promising solution for the biofixation of carbon dioxide. In fact, these micro-organisms are able to offset high levels of CO2 thanks to photosynthesis. Microalgae are also used in various fields (food industr 410 0$aFocus bioengineering and health science series. 606 $aMicroalgae$xBiotechnology 606 $aCarbon dioxide$xMetabolism 606 $aCarbon sequestration 608 $aElectronic books. 615 0$aMicroalgae$xBiotechnology. 615 0$aCarbon dioxide$xMetabolism. 615 0$aCarbon sequestration. 676 $a579.8 700 $aTebbani$b Sihem$01243378 702 $aTebbani$b Sihem 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910132204903321 996 $aCO2 biofixation by microalgae$92884020 997 $aUNINA